
Using the GNU Privacy Guard
Version 2.4.6

September 2024

The GnuPG Project (https://gnupg.org)

https://gnupg.org

This is the The GNU Privacy Guard Manual (version 2.4.6, September 2024).

Published by The GnuPG Project
https://gnupg.org

(or http://ic6au7wa3f6naxjq.onion)

c© 2002, 2004, 2005, 2006, 2007, 2010 Free Software Foundation, Inc.
c© 2013, 2014, 2015 Werner Koch.
c© 2015, 2016, 2017 g10 Code GmbH.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later version.
The text of the license can be found in the section entitled “Copying”.

https://gnupg.org
http://ic6au7wa3f6naxjq.onion

i

Short Contents

1 A short installation guide . 1

2 Invoking GPG-AGENT . 3

3 Invoking DIRMNGR . 25
4 Invoking GPG . 39

5 Invoking GPGSM . 107

6 Invoking the SCDAEMON . 129

7 How to Specify a User Id . 139

8 Trust Values . 143

9 Smart Card Tool . 145

10 Helper Tools . 159

11 Web Key Service . 189

12 How to do certain things . 195

13 Notes pertaining to certain OSes . 201

14 How to solve problems . 203

GNU General Public License . 209

Contributors to GnuPG . 221

Glossary . 223

Option Index . 225

Environment Variable and File Index . 233

Index . 235

ii Using the GNU Privacy Guard

iii

Table of Contents

1 A short installation guide . 1

2 Invoking GPG-AGENT . 3
2.1 Commands . 3
2.2 Option Summary . 4
2.3 Configuration . 12
2.4 Use of some signals . 14
2.5 Examples . 15
2.6 Agent’s Assuan Protocol . 15

2.6.1 Decrypting a session key . 15
2.6.2 Signing a Hash . 16
2.6.3 Generating a Key . 17
2.6.4 Importing a Secret Key . 18
2.6.5 Export a Secret Key . 18
2.6.6 Importing a Root Certificate . 18
2.6.7 Ask for a passphrase . 19
2.6.8 Remove a cached passphrase . 20
2.6.9 Set a passphrase for a keygrip . 20
2.6.10 Ask for confirmation . 20
2.6.11 Check whether a key is available . 21
2.6.12 Register a smartcard . 21
2.6.13 Change a Passphrase . 21
2.6.14 Change the standard display . 21
2.6.15 Get the Event Counters . 21
2.6.16 Return information about the process 22
2.6.17 Set options for the session . 22

3 Invoking DIRMNGR . 25
3.1 Commands . 25
3.2 Option Summary . 26
3.3 Configuration . 33
3.4 Use of signals . 35
3.5 Examples . 35
3.6 Dirmngr’s Assuan Protocol . 36

3.6.1 Return the certificate(s) found . 36
3.6.2 Validate a certificate using a CRL or OCSP 36
3.6.3 Validate a certificate using a CRL . 37
3.6.4 Validate a certificate using OCSP . 38
3.6.5 Put a certificate into the internal cache 38
3.6.6 Validate a certificate for debugging . 38

iv Using the GNU Privacy Guard

4 Invoking GPG . 39
4.1 Commands . 39

4.1.1 Commands not specific to the function 39
4.1.2 Commands to select the type of operation 39
4.1.3 How to manage your keys . 47

4.2 Option Summary . 55
4.2.1 How to change the configuration . 55
4.2.2 Key related options . 71
4.2.3 Input and Output . 73
4.2.4 OpenPGP protocol specific options . 80
4.2.5 Compliance options . 81
4.2.6 Doing things one usually doesn’t want to do 83
4.2.7 Deprecated options . 94

4.3 Configuration files . 95
4.4 Examples . 98
4.5 Unattended Usage . 101

4.5.1 Programmatic use of GnuPG . 101
4.5.2 Ephemeral home directories . 101
4.5.3 The quick key manipulation interface . 102
4.5.4 Unattended key generation . 102

5 Invoking GPGSM . 107
5.1 Commands . 107

5.1.1 Commands not specific to the function 107
5.1.2 Commands to select the type of operation 107
5.1.3 How to manage the certificates and keys 108

5.2 Option Summary . 110
5.2.1 How to change the configuration . 110
5.2.2 Certificate related options . 111
5.2.3 Input and Output . 113
5.2.4 How to change how the CMS is created 114
5.2.5 Doing things one usually do not want to do 115

5.3 Configuration files . 118
5.4 Examples . 119
5.5 Unattended Usage . 120

5.5.1 Automated signature checking . 120
5.5.2 CSR and certificate creation . 120

5.6 The Protocol the Server Mode Uses . 123
5.6.1 Encrypting a Message . 123
5.6.2 Decrypting a message . 124
5.6.3 Signing a Message . 124
5.6.4 Verifying a Message . 124
5.6.5 Generating a Key . 125
5.6.6 List available keys . 125
5.6.7 Export certificates . 125
5.6.8 Import certificates . 126
5.6.9 Delete certificates . 126
5.6.10 Retrieve an audit log . 126

v

5.6.11 Return information about the process 126
5.6.12 Session options . 127

6 Invoking the SCDAEMON 129
6.1 Commands . 129
6.2 Option Summary . 129
6.3 Description of card applications . 132

6.3.1 The OpenPGP card application “openpgp” 133
6.3.2 The Telesec NetKey card “nks” . 133
6.3.3 The DINSIG card application “dinsig” 133
6.3.4 The PKCS#15 card application “p15” 133
6.3.5 The Geldkarte card application “geldkarte” 133
6.3.6 The SmartCard-HSM card application “sc-hsm” 133
6.3.7 The Undefined card application “undefined” 133

6.4 Configuration files . 133
6.5 Examples . 134
6.6 Scdaemon’s Assuan Protocol . 134

6.6.1 Return the serial number . 134
6.6.2 Read all useful information from the card 134
6.6.3 Return a certificate . 135
6.6.4 Return a public key . 135
6.6.5 Signing data with a Smartcard . 135
6.6.6 Decrypting data with a Smartcard . 135
6.6.7 Read an attribute’s value . 135
6.6.8 Update an attribute’s value . 135
6.6.9 Write a key to a card . 136
6.6.10 Generate a new key on-card . 136
6.6.11 Return random bytes generated on-card 136
6.6.12 Change PINs . 136
6.6.13 Perform a VERIFY operation . 136
6.6.14 Perform a RESTART operation . 136
6.6.15 Send a verbatim APDU to the card . 137

7 How to Specify a User Id . 139

8 Trust Values . 143

9 Smart Card Tool . 145
9.1 Administrate smart cards. 145

vi Using the GNU Privacy Guard

10 Helper Tools . 159
10.1 Read logs from a socket . 159
10.2 Verify OpenPGP signatures . 160

10.2.1 Examples . 162
10.2.2 Environment . 162
10.2.3 FILES . 162

10.3 Create .gnupg home directories . 162
10.4 Modify .gnupg home directories . 162

10.4.1 Invoking gpgconf . 163
10.4.2 Format conventions . 166
10.4.3 Listing components . 167
10.4.4 Checking programs . 168
10.4.5 Listing options . 169
10.4.6 Changing options . 172
10.4.7 Listing global options . 172
10.4.8 Get and compare software versions. 173
10.4.9 Files used by gpgconf . 174

10.5 Run gpgconf for all users . 175
10.6 Put a passphrase into the cache . 175

10.6.1 List of all commands and options . 175
10.7 Communicate with a running agent . 176

10.7.1 List of all options . 176
10.7.2 Control commands . 178

10.8 The Dirmngr Client Tool . 181
10.9 Parse a mail message into an annotated format 183
10.10 Encrypt or sign files into an archive . 183
10.11 Encrypt rfc822 formated mail in a pipeline 185
10.12 Check a passphrase on stdin against the patternfile 186

11 Web Key Service . 189
11.1 Send requests via WKS . 189
11.2 Provide the Web Key Service . 191

12 How to do certain things 195
12.1 Creating a TLS server certificate . 195

13 Notes pertaining to certain OSes 201
13.1 Microsoft Windows Notes . 201

14 How to solve problems . 203
14.1 Debugging Tools . 203

14.1.1 Scrutinizing a keybox file . 203
14.2 Various hints on debugging . 204
14.3 Commonly Seen Problems . 204
14.4 How the whole thing works internally . 206

14.4.1 How the components work together . 206
14.4.2 Relationship between GnuPG 1.4 and 2.x 206

vii

GNU General Public License 209
Preamble . 209
TERMS AND CONDITIONS . 210
How to Apply These Terms to Your New Programs 219

Contributors to GnuPG . 221

Glossary . 223

Option Index . 225

Environment Variable and File Index 233

Index . 235

viii Using the GNU Privacy Guard

Chapter 1: A short installation guide 1

1 A short installation guide

Unfortunately the installation guide has not been finished in time. Instead of delaying the
release of GnuPG 2.0 even further, I decided to release without that guide. The chapter on
gpg-agent and gpgsm do include brief information on how to set up the whole thing. Please
watch the GnuPG website for updates of the documentation. In the meantime you may
search the GnuPG mailing list archives or ask on the gnupg-users mailing list for advise on
how to solve problems or how to get that whole thing up and running.

** Building the software

Building the software is described in the file ‘INSTALL’. Given that you are already
reading this documentation we can only give some extra hints.

To comply with the rules on GNU systems you should have build time configured gnupg

using:

./configure --sysconfdir=/etc --localstatedir=/var

This is to make sure that system wide configuration files are searched in the directory
‘/etc’ and variable data below ‘/var’; the default would be to also install them below
‘/usr/local’ where the binaries get installed. If you selected to use the ‘--prefix=/’ you
obviously don’t need those option as they are the default then.

** Notes on setting a root CA key to trusted

X.509 is based on a hierarchical key infrastructure. At the root of the tree a trusted
anchor (root certificate) is required. There are usually no other means of verifying
whether this root certificate is trustworthy than looking it up in a list. GnuPG uses a file
(‘trustlist.txt’) to keep track of all root certificates it knows about. There are 3 ways
to get certificates into this list:

• Use the list which comes with GnuPG. However this list only contains a few root
certificates. Most installations will need more.

• Let gpgsm ask you whether you want to insert a new root certificate. This feature is
enabled by default; you may disable it using the option ‘no-allow-mark-trusted’ into
‘gpg-agent.conf’.

• Manually maintain the list of trusted root certificates. For a multi user installation
this can be done once for all users on a machine. Specific changes on a per-user base
are also possible.

2 Using the GNU Privacy Guard

Chapter 2: Invoking GPG-AGENT 3

2 Invoking GPG-AGENT

gpg-agent is a daemon to manage secret (private) keys independently from any protocol.
It is used as a backend for gpg and gpgsm as well as for a couple of other utilities.

The agent is automatically started on demand by gpg, gpgsm, gpgconf, or gpg-connect-
agent. Thus there is no reason to start it manually. In case you want to use the included
Secure Shell Agent you may start the agent using:

gpg-connect-agent /bye

If you want to manually terminate the currently-running agent, you can safely do so with:

gpgconf --kill gpg-agent

You should always add the following lines to your .bashrc or whatever initialization file is
used for all shell invocations:

GPG_TTY=$(tty)

export GPG_TTY

It is important that this environment variable always reflects the output of the tty com-
mand. For W32 systems this option is not required.

Please make sure that a proper pinentry program has been installed under the default
filename (which is system dependent) or use the option ‘pinentry-program’ to specify
the full name of that program. It is often useful to install a symbolic link from the
actual used pinentry (e.g. ‘/usr/local/bin/pinentry-gtk’) to the expected one (e.g.
‘/usr/local/bin/pinentry’).

See [Option Index], page 225, for an index to GPG-AGENT’s commands and options.

2.1 Commands

Commands are not distinguished from options except for the fact that only one command
is allowed.

--version

Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help

-h Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.

--dump-options

Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

--server Run in server mode and wait for commands on the stdin. The default mode
is to create a socket and listen for commands there.

--daemon [command line]

Start the gpg-agent as a daemon; that is, detach it from the console and run it
in the background.

As an alternative you may create a new process as a child of gpg-agent: gpg-
agent --daemon /bin/sh. This way you get a new shell with the environment

4 Using the GNU Privacy Guard

setup properly; after you exit from this shell, gpg-agent terminates within a few
seconds.

--supervised

Run in the foreground, sending logs by default to stderr, and listening on pro-
vided file descriptors, which must already be bound to listening sockets. This
option is deprecated and not supported on Windows.

If in ‘common.conf’ the option ‘no-autostart’ is set, any start attempts will
be ignored.

In –supervised mode, different file descriptors can be provided for use as dif-
ferent socket types (e.g. ssh, extra) as long as they are identified in the envi-
ronment variable LISTEN_FDNAMES (see sd listen fds(3) on some Linux distri-
butions for more information on this convention).

2.2 Option Summary

Options may either be used on the command line or, after stripping off the two leading
dashes, in the configuration file.

--options file

Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘gpg-agent.conf’ and expected
in the ‘.gnupg’ directory directly below the home directory of the user. This
option is ignored if used in an options file.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

-v

--verbose

Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to gpg-agent, such as ‘-vv’.

-q

--quiet Try to be as quiet as possible.

--batch Don’t invoke a pinentry or do any other thing requiring human interaction.

--faked-system-time epoch

This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970.

--debug-level level

Select the debug level for investigating problems. level may be a numeric value
or a keyword:

Chapter 2: Invoking GPG-AGENT 5

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

advanced More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g.
0x0042) or as a comma separated list of flag names. To get a list of all supported
flags the single word "help" can be used. This option is only useful for debugging
and the behavior may change at any time without notice.

--debug-all

Same as --debug=0xffffffff

--debug-wait n

When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

--debug-quick-random

This option inhibits the use of the very secure random quality level (Libgcrypts
GCRY_VERY_STRONG_RANDOM) and degrades all request down to standard random
quality. It is only used for testing and should not be used for any production
quality keys. This option is only effective when given on the command line.

On GNU/Linux, another way to quickly generate insecure keys is to use rngd to
fill the kernel’s entropy pool with lower quality random data. rngd is typically
provided by the rng-tools package. It can be run as follows: ‘sudo rngd -f

-r /dev/urandom’.

--debug-pinentry

This option enables extra debug information pertaining to the Pinentry. As of
now it is only useful when used along with --debug 1024.

--no-detach

Don’t detach the process from the console. This is mainly useful for debugging.

--steal-socket

In ‘--daemon’ mode, gpg-agent detects an already running gpg-agent and does
not allow one to start a new instance. This option can be used to override

6 Using the GNU Privacy Guard

this check: the new gpg-agent process will try to take over the communication
sockets from the already running process and start anyway. This option should
in general not be used.

-s

--sh

-c

--csh Format the info output in daemon mode for use with the standard Bourne shell
or the C-shell respectively. The default is to guess it based on the environment
variable SHELL which is correct in almost all cases.

--grab

--no-grab

Tell the pinentry to grab the keyboard and mouse. This option should be
used on X-Servers to avoid X-sniffing attacks. Any use of the option ‘--grab’
overrides an used option ‘--no-grab’. The default is ‘--no-grab’.

--log-file file

Append all logging output to file. This is very helpful in seeing what the
agent actually does. Use ‘socket://’ to log to socket. If neither a log file
nor a log file descriptor has been set on a Windows platform, the Registry
entry HKCU\Software\GNU\GnuPG:DefaultLogFile, if set, is used to specify
the logging output.

--no-allow-mark-trusted

Do not allow clients to mark keys as trusted, i.e. put them into the
‘trustlist.txt’ file. This makes it harder for users to inadvertently accept
Root-CA keys.

--no-user-trustlist

Entirely ignore the user trust list and consider only the global trustlist
(‘/usr/local/etc/gnupg/trustlist.txt’). This implies the [option
–no-allow-mark-trusted], page 6.

--sys-trustlist-name file

Changes the default name for the global trustlist from "trustlist.txt" to file. If
file does not contain any slashes and does not start with "~/" it is searched in
the system configuration directory (‘/usr/local/etc/gnupg’).

--allow-preset-passphrase

This option allows the use of gpg-preset-passphrase to seed the internal
cache of gpg-agent with passphrases.

--no-allow-loopback-pinentry

--allow-loopback-pinentry

Disallow or allow clients to use the loopback pinentry features; see the option
‘pinentry-mode’ for details. Allow is the default.

The ‘--force’ option of the Assuan command DELETE_KEY is also controlled
by this option: The option is ignored if a loopback pinentry is disallowed.

--no-allow-external-cache

Tell Pinentry not to enable features which use an external cache for passphrases.

Chapter 2: Invoking GPG-AGENT 7

Some desktop environments prefer to unlock all credentials with one master
password and may have installed a Pinentry which employs an additional ex-
ternal cache to implement such a policy. By using this option the Pinentry is
advised not to make use of such a cache and instead always ask the user for the
requested passphrase.

--allow-emacs-pinentry

Tell Pinentry to allow features to divert the passphrase entry to a running
Emacs instance. How this is exactly handled depends on the version of the
used Pinentry.

--ignore-cache-for-signing

This option will let gpg-agent bypass the passphrase cache for all signing op-
eration. Note that there is also a per-session option to control this behavior
but this command line option takes precedence.

--default-cache-ttl n

Set the time a cache entry is valid to n seconds. The default is 600 seconds.
Each time a cache entry is accessed, the entry’s timer is reset. To set an entry’s
maximum lifetime, use max-cache-ttl. Note that a cached passphrase may not
be evicted immediately from memory if no client requests a cache operation.
This is due to an internal housekeeping function which is only run every few
seconds.

--default-cache-ttl-ssh n

Set the time a cache entry used for SSH keys is valid to n seconds. The default
is 1800 seconds. Each time a cache entry is accessed, the entry’s timer is reset.
To set an entry’s maximum lifetime, use max-cache-ttl-ssh.

--max-cache-ttl n

Set the maximum time a cache entry is valid to n seconds. After this time a
cache entry will be expired even if it has been accessed recently or has been set
using gpg-preset-passphrase. The default is 2 hours (7200 seconds).

--max-cache-ttl-ssh n

Set the maximum time a cache entry used for SSH keys is valid to n seconds.
After this time a cache entry will be expired even if it has been accessed recently
or has been set using gpg-preset-passphrase. The default is 2 hours (7200
seconds).

--enforce-passphrase-constraints

Enforce the passphrase constraints by not allowing the user to bypass them
using the “Take it anyway” button.

--min-passphrase-len n

Set the minimal length of a passphrase. When entering a new passphrase shorter
than this value a warning will be displayed. Defaults to 8.

--min-passphrase-nonalpha n

Set the minimal number of digits or special characters required in a passphrase.
When entering a new passphrase with less than this number of digits or special
characters a warning will be displayed. Defaults to 1.

8 Using the GNU Privacy Guard

--check-passphrase-pattern file

--check-sym-passphrase-pattern file

Check the passphrase against the pattern given in file. When entering a new
passphrase matching one of these pattern a warning will be displayed. If file
does not contain any slashes and does not start with "~/" it is searched in the
system configuration directory (‘/usr/local/etc/gnupg’). The default is not
to use any pattern file. The second version of this option is only used when
creating a new symmetric key to allow the use of different patterns for such
passphrases.

Security note: It is known that checking a passphrase against a list of pattern
or even against a complete dictionary is not very effective to enforce good
passphrases. Users will soon figure up ways to bypass such a policy. A better
policy is to educate users on good security behavior and optionally to run a
passphrase cracker regularly on all users passphrases to catch the very simple
ones.

--max-passphrase-days n

Ask the user to change the passphrase if n days have passed since the last
change. With ‘--enforce-passphrase-constraints’ set the user may not
bypass this check.

--enable-passphrase-history

This option does nothing yet.

--pinentry-invisible-char char

This option asks the Pinentry to use char for displaying hidden characters. char
must be one character UTF-8 string. A Pinentry may or may not honor this
request.

--pinentry-timeout n

This option asks the Pinentry to timeout after n seconds with no user input.
The default value of 0 does not ask the pinentry to timeout, however a Pinentry
may use its own default timeout value in this case. A Pinentry may or may not
honor this request.

--pinentry-formatted-passphrase

This option asks the Pinentry to enable passphrase formatting when asking the
user for a new passphrase and masking of the passphrase is turned off.

If passphrase formatting is enabled, then all non-breaking space characters are
stripped from the entered passphrase. Passphrase formatting is mostly useful
in combination with passphrases generated with the GENPIN feature of some
Pinentries. Note that such a generated passphrase, if not modified by the
user, skips all passphrase constraints checking because such constraints would
actually weaken the generated passphrase.

--pinentry-program filename

Use program filename as the PIN entry. The default is installation dependent.
With the default configuration the name of the default pinentry is ‘pinentry’;
if that file does not exist but a ‘pinentry-basic’ exist the latter is used.

Chapter 2: Invoking GPG-AGENT 9

On a Windows platform the default is to use the first existing program from
this list: ‘bin\pinentry.exe’, ‘..\Gpg4win\bin\pinentry.exe’,
‘..\Gpg4win\pinentry.exe’, ‘..\GNU\GnuPG\pinentry.exe’,
‘..\GNU\bin\pinentry.exe’, ‘bin\pinentry-basic.exe’ where the
file names are relative to the GnuPG installation directory.

--pinentry-touch-file filename

By default the filename of the socket gpg-agent is listening for requests is passed
to Pinentry, so that it can touch that file before exiting (it does this only in
curses mode). This option changes the file passed to Pinentry to filename. The
special name /dev/null may be used to completely disable this feature. Note
that Pinentry will not create that file, it will only change the modification and
access time.

--scdaemon-program filename

Use program filename as the Smartcard daemon. The default is installation
dependent and can be shown with the gpgconf command.

--disable-scdaemon

Do not make use of the scdaemon tool. This option has the effect of disabling
the ability to do smartcard operations. Note, that enabling this option at
runtime does not kill an already forked scdaemon.

--disable-check-own-socket

gpg-agent employs a periodic self-test to detect a stolen socket. This usually
means a second instance of gpg-agent has taken over the socket and gpg-agent

will then terminate itself. This option may be used to disable this self-test for
debugging purposes.

--use-standard-socket

--no-use-standard-socket

--use-standard-socket-p

Since GnuPG 2.1 the standard socket is always used. These options have no
more effect. The command gpg-agent --use-standard-socket-p will thus
always return success.

--display string

--ttyname string

--ttytype string

--lc-ctype string

--lc-messages string

--xauthority string

These options are used with the server mode to pass localization information.

--keep-tty

--keep-display

Ignore requests to change the current tty or X window system’s DISPLAY vari-
able respectively. This is useful to lock the pinentry to pop up at the tty or
display you started the agent.

--listen-backlog n

Set the size of the queue for pending connections. The default is 64.

10 Using the GNU Privacy Guard

--extra-socket name

The extra socket is created by default, you may use this option to change
the name of the socket. To disable the creation of the socket use “none” or
“/dev/null” for name.

Also listen on native gpg-agent connections on the given socket. The intended
use for this extra socket is to setup a Unix domain socket forwarding from a
remote machine to this socket on the local machine. A gpg running on the
remote machine may then connect to the local gpg-agent and use its private
keys. This enables decrypting or signing data on a remote machine without
exposing the private keys to the remote machine.

--enable-extended-key-format

--disable-extended-key-format

These options are obsolete and have no effect. The extended key format is used
for years now and has been supported since 2.1.12. Existing keys in the old
format are migrated to the new format as soon as they are touched.

--enable-ssh-support

--enable-win32-openssh-support

--enable-putty-support

On Unix platforms the OpenSSH Agent protocol is always enabled,
but gpg-agent will only set the SSH_AUTH_SOCK variable if the option
‘enable-ssh-support’ is given. Some Linux distributions use the presence of
this option to decide whether the old ssh-agent shall be started.

On Windows support for the native ssh implementation must be enabled using
the the option ‘enable-win32-openssh-support’. For using gpg-agent as a
replacement for PuTTY’s Pageant, the option ‘enable-putty-support’ must
be enabled.

In this mode of operation, the agent does not only implement the gpg-agent
protocol, but also the agent protocol used by OpenSSH (through a separate
socket or via Named Pipes) or the protocol used by PuTTY. Consequently,
this allows one to use the gpg-agent as a drop-in replacement for the ssh-agent.

SSH keys, which are to be used through the agent, need to be added to the
gpg-agent initially through the ssh-add utility. When a key is added, ssh-add
will ask for the password of the provided key file and send the unprotected key
material to the agent; this causes the gpg-agent to ask for a passphrase, which
is to be used for encrypting the newly received key and storing it in a gpg-agent
specific directory.

Once a key has been added to the gpg-agent this way, the gpg-agent will be
ready to use the key.

Note: in case the gpg-agent receives a signature request, the user might need
to be prompted for a passphrase, which is necessary for decrypting the stored
key. Since the ssh-agent protocol does not contain a mechanism for telling the
agent on which display/terminal it is running, gpg-agent’s ssh-support will use
the TTY or X display where gpg-agent has been started. To switch this display
to the current one, the following command may be used:

gpg-connect-agent updatestartuptty /bye

Chapter 2: Invoking GPG-AGENT 11

Although all GnuPG components try to start the gpg-agent as needed, this is
not possible for the ssh support because ssh does not know about it. Thus if
no GnuPG tool which accesses the agent has been run, there is no guarantee
that ssh is able to use gpg-agent for authentication. To fix this you may start
gpg-agent if needed using this simple command:

gpg-connect-agent /bye

Adding the ‘--verbose’ shows the progress of starting the agent.

The ‘--enable-putty-support’ is only available under Windows and allows
the use of gpg-agent with the ssh implementation putty. This is similar to the
regular ssh-agent support but makes use of Windows message queue as required
by putty.

The order in which keys are presented to ssh are:

Negative Use-for-ssh values

If a key file has the attribute "Use-for-ssh" and its value is negative,
these keys are presented first to ssh. The negative values are capped
at -999 with -999 being lower ranked than -1. These values can be
used to prefer on-disk keys over keys taken from active cards.

Active cards

Active cards (inserted into a card reader or plugged in tokens) are
always tried; they are ordered by their serial numbers.

Keys listed in the sshcontrol file

Non-disabled keys from the sshcontrol file are presented in the order
they appear in this file. Note that the sshcontrol file is deprecated.

Positive Use-for-ssh values

If a key file has the attribute "Use-for-ssh" and its value is "yes",
"true", or any positive number the key is presented in the order of
their values. "yes" and "true" have a value of 1; other values are
capped at 99999.

Editing the "Use-for-ssh" values can be done with an editor or using gpg-

connect-agent and "KEYATTR" (Remember to append a colon to the key;
i.e. use "Use-for-ssh:").

--ssh-fingerprint-digest

Select the digest algorithm used to compute ssh fingerprints that are commu-
nicated to the user, e.g. in pinentry dialogs. OpenSSH has transitioned from
using MD5 to the more secure SHA256.

--auto-expand-secmem n

Allow Libgcrypt to expand its secure memory area as required. The optional
value n is a non-negative integer with a suggested size in bytes of each addi-
tionally allocated secure memory area. The value is rounded up to the next 32
KiB; usual C style prefixes are allowed. For an heavy loaded gpg-agent with
many concurrent connection this option avoids sign or decrypt errors due to
out of secure memory error returns.

12 Using the GNU Privacy Guard

--s2k-calibration milliseconds

Change the default calibration time to milliseconds. The given value is capped
at 60 seconds; a value of 0 resets to the compiled-in default. This option is
re-read on a SIGHUP (or gpgconf --reload gpg-agent) and the S2K count is
then re-calibrated.

--s2k-count n

Specify the iteration count used to protect the passphrase. This option can
be used to override the auto-calibration done by default. The auto-calibration
computes a count which requires by default 100ms to mangle a given passphrase.
See also ‘--s2k-calibration’.

To view the actually used iteration count and the milliseconds required for an
S2K operation use:

gpg-connect-agent ’GETINFO s2k_count’ /bye

gpg-connect-agent ’GETINFO s2k_time’ /bye

To view the auto-calibrated count use:

gpg-connect-agent ’GETINFO s2k_count_cal’ /bye

2.3 Configuration

There are a few configuration files needed for the operation of the agent. By default they
may all be found in the current home directory (see [option –homedir], page 4).

‘gpg-agent.conf’
This is the standard configuration file read by gpg-agent on startup. It may
contain any valid long option; the leading two dashes may not be entered and the
option may not be abbreviated. This file is also read after a SIGHUP however only
a few options will actually have an effect. This default name may be changed
on the command line (see [option –options], page 4). You should backup this
file.

‘trustlist.txt’
This is the list of trusted keys. You should backup this file.

Comment lines, indicated by a leading hash mark, as well as empty lines are
ignored. To mark a key as trusted you need to enter its fingerprint followed by
a space and a capital letter S. Colons may optionally be used to separate the
bytes of a fingerprint; this enables cutting and pasting the fingerprint from a
key listing output. If the line is prefixed with a ! the key is explicitly marked
as not trusted.

Here is an example where two keys are marked as ultimately trusted and one
as not trusted:

Chapter 2: Invoking GPG-AGENT 13

� �
CN=Wurzel ZS 3,O=Intevation GmbH,C=DE

A6935DD34EF3087973C706FC311AA2CCF733765B S

CN=PCA-1-Verwaltung-02/O=PKI-1-Verwaltung/C=DE

DC:BD:69:25:48:BD:BB:7E:31:6E:BB:80:D3:00:80:35:D4:F8:A6:CD S

CN=Root-CA/O=Schlapphuete/L=Pullach/C=DE

!14:56:98:D3:FE:9C:CA:5A:31:6E:BC:81:D3:11:4E:00:90:A3:44:C2 S
 	
Before entering a key into this file, you need to ensure its authenticity. How to
do this depends on your organisation; your administrator might have already
entered those keys which are deemed trustworthy enough into this file. Places
where to look for the fingerprint of a root certificate are letters received from
the CA or the website of the CA (after making 100% sure that this is indeed the
website of that CA). You may want to consider disallowing interactive updates
of this file by using the [option –no-allow-mark-trusted], page 6. It might even
be advisable to change the permissions to read-only so that this file can’t be
changed inadvertently.

As a special feature a line include-default will include a global list of trusted
certificates (e.g. ‘/usr/local/etc/gnupg/trustlist.txt’). This global list is
also used if the local list is not available; the [option –no-user-trustlist], page 6
enforces the use of only this global list.

It is possible to add further flags after the S for use by the caller:

relax Relax checking of some root certificate requirements. As of now
this flag allows the use of root certificates with a missing basic-
Constraints attribute (despite that it is a MUST for CA certificates)
and disables CRL checking for the root certificate.

cm If validation of a certificate finally issued by a CA with this flag set
fails, try again using the chain validation model.

qual The CA is allowed to issue certificates for qualified signatures. This
flag has an effect only if used in the global list. This is now the
preferred way to mark such CA; the old way of having a separate
file ‘qualified.txt’ is still supported.

de-vs The CA is part of an approved PKI for the German classification
level VS-NfD. It is only valid in the global trustlist. As of now this
is used only for documentation purpose.

‘sshcontrol’
This file is used when support for the secure shell agent protocol has been
enabled (see [option –enable-ssh-support], page 10). Only keys present in this
file are used in the SSH protocol. You should backup this file.

This file is deprecated in favor of the "Use-for-ssh" attribute in the key files.

The ssh-add tool may be used to add new entries to this file; you may also add
them manually. Comment lines, indicated by a leading hash mark, as well as
empty lines are ignored. An entry starts with optional whitespace, followed by
the keygrip of the key given as 40 hex digits, optionally followed by the caching

14 Using the GNU Privacy Guard

TTL in seconds and another optional field for arbitrary flags. A non-zero TTL
overrides the global default as set by ‘--default-cache-ttl-ssh’.

The only flag support is confirm. If this flag is found for a key, each use of
the key will pop up a pinentry to confirm the use of that key. The flag is
automatically set if a new key was loaded into gpg-agent using the option ‘-c’
of the ssh-add command.

The keygrip may be prefixed with a ! to disable an entry.

The following example lists exactly one key. Note that keys available through
a OpenPGP smartcard in the active smartcard reader are implicitly added to
this list; i.e. there is no need to list them.� �

Key added on: 2011-07-20 20:38:46

Fingerprint: 5e:8d:c4:ad:e7:af:6e:27:8a:d6:13:e4:79:ad:0b:81

34B62F25E277CF13D3C6BCEBFD3F85D08F0A864B 0 confirm
 	
‘private-keys-v1.d/’

This is the directory where gpg-agent stores the private keys. Each key is stored
in a file with the name made up of the keygrip and the suffix ‘key’. You should
backup all files in this directory and take great care to keep this backup closed
away.

Note that on larger installations, it is useful to put predefined files into the directory
‘/usr/local/etc/skel/.gnupg’ so that newly created users start up with a working con-
figuration. For existing users the a small helper script is provided to create these files (see
Section 10.3 [addgnupghome], page 162).

2.4 Use of some signals

A running gpg-agent may be controlled by signals, i.e. using the kill command to send
a signal to the process.

Here is a list of supported signals:

SIGHUP This signal flushes all cached passphrases and if the program has been started
with a configuration file, the configuration file is read again. Only certain
options are honored: quiet, verbose, debug, debug-all, debug-level,
debug-pinentry, no-grab, pinentry-program, pinentry-invisible-char,
default-cache-ttl, max-cache-ttl, ignore-cache-for-signing,
s2k-count, no-allow-external-cache, allow-emacs-pinentry, no-allow-
mark-trusted, disable-scdaemon, and disable-check-own-socket.
scdaemon-program is also supported but due to the current implementation,
which calls the scdaemon only once, it is not of much use unless you manually
kill the scdaemon.

SIGTERM Shuts down the process but waits until all current requests are fulfilled. If the
process has received 3 of these signals and requests are still pending, a shutdown
is forced.

SIGINT Shuts down the process immediately.

SIGUSR1 Dump internal information to the log file.

Chapter 2: Invoking GPG-AGENT 15

SIGUSR2 This signal is used for internal purposes.

2.5 Examples

It is important to set the environment variable GPG_TTY in your login shell, for example in
the ‘~/.bashrc’ init script:� �

export GPG_TTY=$(tty)
 	
If you enabled the Ssh Agent Support, you also need to tell ssh about it by adding this

to your init script:� �
unset SSH_AGENT_PID

if ["${gnupg_SSH_AUTH_SOCK_by:-0}" -ne $$]; then

export SSH_AUTH_SOCK="$(gpgconf --list-dirs agent-ssh-socket)"

fi
 	
2.6 Agent’s Assuan Protocol

Note: this section does only document the protocol, which is used by GnuPG components;
it does not deal with the ssh-agent protocol. To see the full specification of each command,
use

gpg-connect-agent ’help COMMAND’ /bye

or just ’help’ to list all available commands.

The gpg-agent daemon is started on demand by the GnuPG components.

To identify a key we use a thing called keygrip which is the SHA-1 hash of an canonical
encoded S-Expression of the public key as used in Libgcrypt. For the purpose of this
interface the keygrip is given as a hex string. The advantage of using this and not the hash
of a certificate is that it will be possible to use the same keypair for different protocols,
thereby saving space on the token used to keep the secret keys.

The gpg-agent may send status messages during a command or when returning from
a command to inform a client about the progress or result of an operation. For example,
the INQUIRE MAXLEN status message may be sent during a server inquire to inform the
client of the maximum usable length of the inquired data (which should not be exceeded).

2.6.1 Decrypting a session key

The client asks the server to decrypt a session key. The encrypted session key should have
all information needed to select the appropriate secret key or to delegate it to a smartcard.

SETKEY <keyGrip>

Tell the server about the key to be used for decryption. If this is not used, gpg-agent
may try to figure out the key by trying to decrypt the message with each key available.

PKDECRYPT

The agent checks whether this command is allowed and then does an INQUIRY to get
the ciphertext the client should then send the cipher text.

16 Using the GNU Privacy Guard

S: INQUIRE CIPHERTEXT

C: D (xxxxxx

C: D xxxx)

C: END

Please note that the server may send status info lines while reading the data lines from
the client. The data send is a SPKI like S-Exp with this structure:

(enc-val

(<algo>

(<param_name1> <mpi>)

...

(<param_namen> <mpi>)))

Where algo is a string with the name of the algorithm; see the libgcrypt documentation
for a list of valid algorithms. The number and names of the parameters depend on the
algorithm. The agent does return an error if there is an inconsistency.

If the decryption was successful the decrypted data is returned by means of "D" lines.

Here is an example session:� �
C: PKDECRYPT

S: INQUIRE CIPHERTEXT

C: D (enc-val elg (a 349324324)

C: D (b 3F444677CA)))

C: END

S: # session key follows

S: S PADDING 0

S: D (value 1234567890ABCDEF0)

S: OK decryption successful
 	
The PADDING status line is only send if gpg-agent can tell what kind of padding is

used. As of now only the value 0 is used to indicate that the padding has been removed.

2.6.2 Signing a Hash

The client asks the agent to sign a given hash value. A default key will be chosen if no key
has been set. To set a key a client first uses:

SIGKEY <keyGrip>

This can be used multiple times to create multiple signature, the list of keys is reset with
the next PKSIGN command or a RESET. The server tests whether the key is a valid key
to sign something and responds with okay.

SETHASH --hash=<name>|<algo> <hexstring>

The client can use this command to tell the server about the data <hexstring> (which
usually is a hash) to be signed. <algo> is the decimal encoded hash algorithm number as
used by Libgcrypt. Either <algo> or –hash=<name> must be given. Valid names for <name>
are:

sha1 The SHA-1 hash algorithm

sha256 The SHA-256 hash algorithm

rmd160 The RIPE-MD160 hash algorithm

Chapter 2: Invoking GPG-AGENT 17

md5 The old and broken MD5 hash algorithm

tls-md5sha1

A combined hash algorithm as used by the TLS protocol.

The actual signing is done using

PKSIGN <options>

Options are not yet defined, but may later be used to choose among different algorithms.
The agent does then some checks, asks for the passphrase and as a result the server returns
the signature as an SPKI like S-expression in "D" lines:

(sig-val

(<algo>

(<param_name1> <mpi>)

...

(<param_namen> <mpi>)))

The operation is affected by the option

OPTION use-cache-for-signing=0|1

The default of 1 uses the cache. Setting this option to 0 will lead gpg-agent to ignore
the passphrase cache. Note, that there is also a global command line option for gpg-agent
to globally disable the caching.

Here is an example session:� �
C: SIGKEY <keyGrip>

S: OK key available

C: SIGKEY <keyGrip>

S: OK key available

C: PKSIGN

S: # I did ask the user whether he really wants to sign

S: # I did ask the user for the passphrase

S: INQUIRE HASHVAL

C: D ABCDEF012345678901234

C: END

S: # signature follows

S: D (sig-val rsa (s 45435453654612121212))

S: OK
 	
2.6.3 Generating a Key

This is used to create a new keypair and store the secret key inside the active PSE — which
is in most cases a Soft-PSE. A not-yet-defined option allows choosing the storage location.
To get the secret key out of the PSE, a special export tool has to be used.

GENKEY [--no-protection] [--preset] [<cache_nonce>]

Invokes the key generation process and the server will then inquire on the generation
parameters, like:

S: INQUIRE KEYPARM

C: D (genkey (rsa (nbits 1024)))

C: END

The format of the key parameters which depends on the algorithm is of the form:

18 Using the GNU Privacy Guard

(genkey

(algo

(parameter_name_1)

....

(parameter_name_n)))

If everything succeeds, the server returns the *public key* in a SPKI like S-Expression
like this:

(public-key

(rsa

(n <mpi>)

(e <mpi>)))

Here is an example session:� �
C: GENKEY

S: INQUIRE KEYPARM

C: D (genkey (rsa (nbits 1024)))

C: END

S: D (public-key

S: D (rsa (n 326487324683264) (e 10001)))

S OK key created
 	
The ‘--no-protection’ option may be used to prevent prompting for a passphrase to

protect the secret key while leaving the secret key unprotected. The ‘--preset’ option may
be used to add the passphrase to the cache using the default cache parameters.

The ‘--inq-passwd’ option may be used to create the key with a supplied passphrase.
When used the agent does an inquiry with the keyword NEWPASSWD to retrieve that
passphrase. This option takes precedence over ‘--no-protection’; however if the client
sends a empty (zero-length) passphrase, this is identical to ‘--no-protection’.

2.6.4 Importing a Secret Key

This operation is not yet supported by GpgAgent. Specialized tools are to be used for this.

There is no actual need because we can expect that secret keys created by a 3rd party
are stored on a smartcard. If we have generated the key ourselves, we do not need to import
it.

2.6.5 Export a Secret Key

Not implemented.

Should be done by an extra tool.

2.6.6 Importing a Root Certificate

Actually we do not import a Root Cert but provide a way to validate any piece of data by
storing its Hash along with a description and an identifier in the PSE. Here is the interface
description:

ISTRUSTED <fingerprint>

Check whether the OpenPGP primary key or the X.509 certificate with the given finger-
print is an ultimately trusted key or a trusted Root CA certificate. The fingerprint should

Chapter 2: Invoking GPG-AGENT 19

be given as a hexstring (without any blanks or colons or whatever in between) and may be
left padded with 00 in case of an MD5 fingerprint. GPGAgent will answer with:

OK

The key is in the table of trusted keys.

ERR 304 (Not Trusted)

The key is not in this table.

Gpg needs the entire list of trusted keys to maintain the web of trust; the following
command is therefore quite helpful:

LISTTRUSTED

GpgAgent returns a list of trusted keys line by line:

S: D 000000001234454556565656677878AF2F1ECCFF P

S: D 340387563485634856435645634856438576457A P

S: D FEDC6532453745367FD83474357495743757435D S

S: OK

The first item on a line is the hexified fingerprint where MD5 fingerprints are 00 padded
to the left and the second item is a flag to indicate the type of key (so that gpg is able to
only take care of PGP keys). P = OpenPGP, S = S/MIME. A client should ignore the rest
of the line, so that we can extend the format in the future.

Finally a client should be able to mark a key as trusted:

MARKTRUSTED fingerprint "P"|"S"

The server will then pop up a window to ask the user whether she really trusts this key.
For this it will probably ask for a text to be displayed like this:

S: INQUIRE TRUSTDESC

C: D Do you trust the key with the fingerprint @FPR@

C: D bla fasel blurb.

C: END

S: OK

Known sequences with the pattern @foo@ are replaced according to this table:

@FPR16@ Format the fingerprint according to gpg rules for a v3 keys.

@FPR20@ Format the fingerprint according to gpg rules for a v4 keys.

@FPR@ Choose an appropriate format to format the fingerprint.

@@ Replaced by a single @.

2.6.7 Ask for a passphrase

This function is usually used to ask for a passphrase to be used for symmetric encryption, but
may also be used by programs which need special handling of passphrases. This command
uses a syntax which helps clients to use the agent with minimum effort.

GET_PASSPHRASE [--data] [--check] [--no-ask] [--repeat[=N]] \

[--qualitybar] cache_id \

[error_message prompt description]

cache id is expected to be a string used to identify a cached passphrase. Use a X to
bypass the cache. With no other arguments the agent returns a cached passphrase or an

20 Using the GNU Privacy Guard

error. By convention either the hexified fingerprint of the key shall be used for cache id
or an arbitrary string prefixed with the name of the calling application and a colon: Like
gpg:somestring.

error message is either a single X for no error message or a string to be shown as an
error message like (e.g. "invalid passphrase"). Blanks must be percent escaped or replaced
by +’.

prompt is either a single X for a default prompt or the text to be shown as the prompt.
Blanks must be percent escaped or replaced by +.

description is a text shown above the entry field. Blanks must be percent escaped or
replaced by +.

The agent either returns with an error or with a OK followed by the hex encoded
passphrase. Note that the length of the strings is implicitly limited by the maximum length
of a command. If the option ‘--data’ is used, the passphrase is not returned on the OK
line but by regular data lines; this is the preferred method.

If the option ‘--check’ is used, the standard passphrase constraints checks are applied.
A check is not done if the passphrase has been found in the cache.

If the option ‘--no-ask’ is used and the passphrase is not in the cache the user will not
be asked to enter a passphrase but the error code GPG_ERR_NO_DATA is returned.

If the option ‘--qualitybar’ is used and a minimum passphrase length has been con-
figured, a visual indication of the entered passphrase quality is shown.

CLEAR_PASSPHRASE cache_id

may be used to invalidate the cache entry for a passphrase. The function returns with
OK even when there is no cached passphrase.

2.6.8 Remove a cached passphrase

Use this command to remove a cached passphrase.

CLEAR_PASSPHRASE [--mode=normal] <cache_id>

The ‘--mode=normal’ option can be used to clear a cache id that was set by gpg-agent.

2.6.9 Set a passphrase for a keygrip

This command adds a passphrase to the cache for the specified keygrip.

PRESET_PASSPHRASE [--inquire] <string_or_keygrip> <timeout> [<hexstring>]

The passphrase is a hexadecimal string when specified. When not specified, the
passphrase will be retrieved from the pinentry module unless the ‘--inquire’ option was
specified in which case the passphrase will be retrieved from the client.

The timeout parameter keeps the passphrase cached for the specified number of seconds.
A value of -1 means infinite while 0 means the default (currently only a timeout of -1 is
allowed, which means to never expire it).

2.6.10 Ask for confirmation

This command may be used to ask for a simple confirmation by presenting a text and 2
buttons: Okay and Cancel.

Chapter 2: Invoking GPG-AGENT 21

GET_CONFIRMATION description

descriptionis displayed along with a Okay and Cancel button. Blanks must be percent
escaped or replaced by +. A X may be used to display confirmation dialog with a default
text.

The agent either returns with an error or with a OK. Note, that the length of description
is implicitly limited by the maximum length of a command.

2.6.11 Check whether a key is available

This can be used to see whether a secret key is available. It does not return any information
on whether the key is somehow protected.

HAVEKEY keygrips

The agent answers either with OK or No_Secret_Key (208). The caller may want to
check for other error codes as well. More than one keygrip may be given. In this case the
command returns success if at least one of the keygrips corresponds to an available secret
key.

2.6.12 Register a smartcard

LEARN [--send]

This command is used to register a smartcard. With the ‘--send’ option given the
certificates are sent back.

2.6.13 Change a Passphrase

PASSWD [--cache-nonce=<c>] [--passwd-nonce=<s>] [--preset] keygrip

This command is used to interactively change the passphrase of the key identified by the
hex string keygrip. The ‘--preset’ option may be used to add the new passphrase to the
cache using the default cache parameters.

2.6.14 Change the standard display

UPDATESTARTUPTTY

Set the startup TTY and X-DISPLAY variables to the values of this session. This
command is useful to direct future pinentry invocations to another screen. It is only required
because there is no way in the ssh-agent protocol to convey this information.

2.6.15 Get the Event Counters

GETEVENTCOUNTER

This function return one status line with the current values of the event counters. The
event counters are useful to avoid polling by delaying a poll until something has changed.
The values are decimal numbers in the range 0 to UINT_MAX and wrapping around to 0.
The actual values should not be relied upon; they shall only be used to detect a change.

The currently defined counters are:

ANY Incremented with any change of any of the other counters.

KEY Incremented for added or removed private keys.

CARD Incremented for each change of the card reader’s status.

22 Using the GNU Privacy Guard

2.6.16 Return information about the process

This is a multipurpose function to return a variety of information.

GETINFO what

The value of what specifies the kind of information returned:

version Return the version of the program.

pid Return the process id of the process.

socket_name

Return the name of the socket used to connect the agent.

ssh_socket_name

Return the name of the socket used for SSH connections. If SSH support has
not been enabled the error GPG_ERR_NO_DATA will be returned.

2.6.17 Set options for the session

Here is a list of session options which are not yet described with other commands. The
general syntax for an Assuan option is:

OPTION key=value

Supported keys are:

agent-awareness

This may be used to tell gpg-agent of which gpg-agent version the client is
aware of. gpg-agent uses this information to enable features which might break
older clients.

putenv Change the session’s environment to be used for the Pinentry. Valid values are:

name Delete envvar name

name= Set envvar name to the empty string

name=value

Set envvar name to the string value.

use-cache-for-signing

See Assuan command PKSIGN.

allow-pinentry-notify

This does not need any value. It is used to enable the PINENTRY LAUNCHED
inquiry.

pinentry-mode

This option is used to change the operation mode of the pinentry. The following
values are defined:

ask This is the default mode which pops up a pinentry as needed.

cancel Instead of popping up a pinentry, return the error code GPG_ERR_

CANCELED.

error Instead of popping up a pinentry, return the error code GPG_ERR_

NO_PIN_ENTRY.

Chapter 2: Invoking GPG-AGENT 23

loopback Use a loopback pinentry. This fakes a pinentry by using inquiries
back to the caller to ask for a passphrase. This option may only be
set if the agent has been configured for that. To disable this feature
use [option –no-allow-loopback-pinentry], page 6.

cache-ttl-opt-preset

This option sets the cache TTL for new entries created by GENKEY and
PASSWD commands when using the ‘--preset’ option. It is not used a default
value is used.

s2k-count

Instead of using the standard S2K count (which is computed on the fly), the
given S2K count is used for new keys or when changing the passphrase of a key.
Values below 65536 are considered to be 0. This option is valid for the entire
session or until reset to 0. This option is useful if the key is later used on boxes
which are either much slower or faster than the actual box.

pretend-request-origin

This option switches the connection into a restricted mode which handles all
further commands in the same way as they would be handled when originating
from the extra or browser socket. Note that this option is not available in the
restricted mode. Valid values for this option are:

none

local This is a NOP and leaves the connection in the standard way.

remote Pretend to come from a remote origin in the same way as connec-
tions from the ‘--extra-socket’.

browser Pretend to come from a local web browser in the same way as
connections from the ‘--browser-socket’.

24 Using the GNU Privacy Guard

Chapter 3: Invoking DIRMNGR 25

3 Invoking DIRMNGR

Since version 2.1 of GnuPG, dirmngr takes care of accessing the OpenPGP keyservers. As
with previous versions it is also used as a server for managing and downloading certificate
revocation lists (CRLs) for X.509 certificates, downloading X.509 certificates, and providing
access to OCSP providers. Dirmngr is invoked internally by gpg, gpgsm, or via the gpg-

connect-agent tool.

See [Option Index], page 225,for an index to DIRMNGR’s commands and options.

3.1 Commands

Commands are not distinguished from options except for the fact that only one command
is allowed.

--version

Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help, -h

Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.

--dump-options

Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

--server Run in server mode and wait for commands on the stdin. The default mode is
to create a socket and listen for commands there. This is only used for testing.

--daemon Run in background daemon mode and listen for commands on a socket. This
is the way dirmngr is started on demand by the other GnuPG components. To
force starting dirmngr it is in general best to use gpgconf --launch dirmngr.

--supervised

Run in the foreground, sending logs to stderr, and listening on file descriptor 3,
which must already be bound to a listening socket. This option is deprecated
and not supported on Windows.

--list-crls

List the contents of the CRL cache on stdout. This is probably only useful for
debugging purposes.

--load-crl file

This command requires a filename as additional argument, and it will make
Dirmngr try to import the CRL in file into it’s cache. Note, that this is
only possible if Dirmngr is able to retrieve the CA’s certificate directly by
its own means. In general it is better to use gpgsm’s --call-dirmngr loadcrl

filename command so that gpgsm can help dirmngr.

--fetch-crl url

This command requires an URL as additional argument, and it will make dirm-
ngr try to retrieve and import the CRL from that url into it’s cache. This is

26 Using the GNU Privacy Guard

mainly useful for debugging purposes. The dirmngr-client provides the same
feature for a running dirmngr.

--shutdown

This commands shuts down an running instance of Dirmngr. This command
has currently no effect.

--flush This command removes all CRLs from Dirmngr’s cache. Client requests will
thus trigger reading of fresh CRLs.

3.2 Option Summary

Note that all long options with the exception of ‘--options’ and ‘--homedir’ may also be
given in the configuration file after stripping off the two leading dashes.

--options file

Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘dirmngr.conf’ and expected in
the home directory.

--homedir dir

Set the name of the home directory to dir. This option is only effective when
used on the command line. The default is the directory named ‘.gnupg’ directly
below the home directory of the user unless the environment variable GNUPGHOME
has been set in which case its value will be used. Many kinds of data are stored
within this directory.

-v

--verbose

Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to dirmngr, such as ‘-vv’.

--log-file file

Append all logging output to file. This is very helpful in seeing what the agent
actually does. Use ‘socket://’ to log to socket.

--compatibility-flags flags

Set compatibility flags to work around certain problems or to emulate bugs.
The flags are given as a comma separated list of flag names and are OR-ed
together. The special flag "none" clears the list and allows one to start over
with an empty list. To get a list of available flags the sole word "help" can be
used.

--faked-system-time epoch

This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970. Alternatively
epoch may be given as a full ISO time string (e.g. "20070924T154812").

--debug-level level

Select the debug level for investigating problems. level may be a numeric value
or by a keyword:

Chapter 3: Invoking DIRMNGR 27

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

advanced More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g.
0x0042) or as a comma separated list of flag names. To get a list of all supported
flags the single word "help" can be used. This option is only useful for debugging
and the behavior may change at any time without notice.

--debug-all

Same as --debug=0xffffffff

--tls-debug level

Enable debugging of the TLS layer at level. The details of the debug level
depend on the used TLS library and are not set in stone.

--debug-wait n

When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

--disable-check-own-socket

On some platforms dirmngr is able to detect the removal of its socket file and
shutdown itself. This option disable this self-test for debugging purposes.

-s

--sh

-c

--csh Format the info output in daemon mode for use with the standard Bourne shell
respective the C-shell. The default is to guess it based on the environment
variable SHELL which is in almost all cases sufficient.

--force Enabling this option forces loading of expired CRLs; this is only useful for
debugging.

--use-tor

--no-use-tor

The option ‘--use-tor’ switches Dirmngr and thus GnuPG into “Tor mode” to
route all network access via Tor (an anonymity network). Certain other features

28 Using the GNU Privacy Guard

are disabled in this mode. The effect of ‘--use-tor’ cannot be overridden by
any other command or even by reloading dirmngr. The use of ‘--no-use-tor’
disables the use of Tor. The default is to use Tor if it is available on startup or
after reloading dirmngr. The test on the availability of Tor is done by trying
to connect to a SOCKS proxy at either port 9050 or 9150; if another type of
proxy is listening on one of these ports, you should use ‘--no-use-tor’.

--standard-resolver

This option forces the use of the system’s standard DNS resolver code. This
is mainly used for debugging. Note that on Windows a standard resolver is
not used and all DNS access will return the error “Not Implemented” if this
option is used. Using this together with enabled Tor mode returns the error
“Not Enabled”.

--recursive-resolver

When possible use a recursive resolver instead of a stub resolver.

--resolver-timeout n

Set the timeout for the DNS resolver to N seconds. The default are 30 seconds.

--connect-timeout n

--connect-quick-timeout n

Set the timeout for HTTP and generic TCP connection attempts to N seconds.
The value set with the quick variant is used when the –quick option has been
given to certain Assuan commands. The quick value is capped at the value of
the regular connect timeout. The default values are 15 and 2 seconds. Note
that the timeout values are for each connection attempt; the connection code
will attempt to connect all addresses listed for a server.

--listen-backlog n

Set the size of the queue for pending connections. The default is 64.

--allow-version-check

Allow Dirmngr to connect to https://versions.gnupg.org to get the list of
current software versions. If this option is enabled the list is retrieved in case
the local copy does not exist or is older than 5 to 7 days. See the option
‘--query-swdb’ of the command gpgconf for more details. Note, that regard-
less of this option a version check can always be triggered using this command:

gpg-connect-agent --dirmngr ’loadswdb --force’ /bye

--keyserver name

Use name as your keyserver. This is the server that gpg communicates with to
receive keys, send keys, and search for keys. The format of the name is a URI:
‘scheme:[//]keyservername[:port]’ The scheme is the type of keyserver: "hkp"
for the HTTP (or compatible) keyservers or "ldap" for the LDAP keyservers.
Note that your particular installation of GnuPG may have other keyserver types
available as well. Keyserver schemes are case-insensitive. After the keyserver
name, optional keyserver configuration options may be provided. These are the
same as the ‘--keyserver-options’ of gpg, but apply only to this particular
keyserver.

Chapter 3: Invoking DIRMNGR 29

Some keyservers synchronize with each other, so there is not always a need to
send keys to more than one server. Some keyservers use round robin DNS to
give a different keyserver each time you use it.

If exactly two keyservers are configured and only one is a Tor hidden service
(.onion), Dirmngr selects the keyserver to use depending on whether Tor is
locally running or not. The check for a running Tor is done for each new
connection.

If no keyserver is explicitly configured, dirmngr will use the built-in default of
https://keyserver.ubuntu.com. To avoid the use of a default keyserver the
value none can be used.

Windows users with a keyserver running on their Active Directory may use the
short form ldap:/// for name to access this directory.

For accessing anonymous LDAP keyservers name is in general just a
ldaps://ldap.example.com. A BaseDN parameter should never be specified.
If authentication is required things are more complicated and two methods are
available:

The modern method (since version 2.2.28) is to use the very same syntax as
used with the option ‘--ldapserver’. Please see over there for details; here is
an example:

keyserver ldap:ldap.example.com::uid=USERNAME,ou=GnuPG Users,

dc=example,dc=com:PASSWORD::starttls

The other method is to use a full URL for name; for example:

keyserver ldaps://ldap.example.com/????bindname=uid=USERNAME

%2Cou=GnuPG%20Users%2Cdc=example%2Cdc=com,password=PASSWORD

Put this all on one line without any spaces and keep the ’%2C’ as given. Replace
USERNAME, PASSWORD, and the ’dc’ parts according to the instructions re-
ceived from your LDAP administrator. Note that only simple authentication
(i.e. cleartext passwords) is supported and thus using ldaps is strongly sug-
gested (since 2.2.28 "ldaps" defaults to port 389 and uses STARTTLS). On
Windows authentication via AD can be requested by adding gpgNtds=1 after
the fourth question mark instead of the bindname and password parameter.

--nameserver ipaddr

In “Tor mode” Dirmngr uses a public resolver via Tor to resolve DNS names.
If the default public resolver, which is 8.8.8.8, shall not be used a different
one can be given using this option. Note that a numerical IP address must be
given (IPv6 or IPv4) and that no error checking is done for ipaddr.

--disable-ipv4

--disable-ipv6

Disable the use of all IPv4 or IPv6 addresses.

--disable-ldap

Entirely disables the use of LDAP.

--disable-http

Entirely disables the use of HTTP.

30 Using the GNU Privacy Guard

--ignore-http-dp

When looking for the location of a CRL, the to be tested certificate usually con-
tains so called CRL Distribution Point (DP) entries which are URLs describing
the way to access the CRL. The first found DP entry is used. With this option
all entries using the HTTP scheme are ignored when looking for a suitable DP.

--ignore-ldap-dp

This is similar to ‘--ignore-http-dp’ but ignores entries using the LDAP

scheme. Both options may be combined resulting in ignoring DPs entirely.

--ignore-ocsp-service-url

Ignore all OCSP URLs contained in the certificate. The effect is to force the
use of the default responder.

--honor-http-proxy

If the environment variable http_proxy has been set, use its value to access
HTTP servers. If on Windows the option is used but the environment variable
is not set, the proxy settings are taken from the system.

--http-proxy host[:port]

Use host and port to access HTTP servers. The use of this option overrides the
environment variable http_proxy regardless whether ‘--honor-http-proxy’
has been set.

--ldap-proxy host[:port]

Use host and port to connect to LDAP servers. If port is omitted, port 389
(standard LDAP port) is used. This overrides any specified host and port part
in a LDAP URL and will also be used if host and port have been omitted from
the URL.

--only-ldap-proxy

Never use anything else but the LDAP "proxy" as configured with
‘--ldap-proxy’. Usually dirmngr tries to use other configured LDAP server if
the connection using the "proxy" failed.

--ldapserverlist-file file

Read the list of LDAP servers to consult for CRLs and X.509 certificates from
file instead of the default per-user ldap server list file. The default value for file
is ‘dirmngr_ldapservers.conf’.

This server list file contains one LDAP server per line in the format

hostname:port:username:password:base dn:flags

Lines starting with a ‘#’ are comments.

Note that as usual all strings entered are expected to be UTF-8 encoded. Ob-
viously this will lead to problems if the password has originally been encoded
as Latin-1. There is no other solution here than to put such a password in the
binary encoding into the file (i.e. non-ascii characters won’t show up readable).1

1 The gpgconf tool might be helpful for frontends as it enables editing this configuration file using percent-
escaped strings.

Chapter 3: Invoking DIRMNGR 31

--ldapserver spec

This is an alternative way to specify LDAP servers for CRL and X.509
certificate retrieval. If this option is used the servers configured in
‘dirmngr_ldapservers.conf’ (or the file given by ‘--ldapserverlist-file’)
are cleared. Note that ‘dirmngr_ldapservers.conf’ is not read again by a
reload signal. However, ‘--ldapserver’ options are read again.

spec is either a proper LDAP URL or a colon delimited list of the form

hostname:port:username:password:base dn:flags:

with an optional prefix of ldap: (but without the two slashes which would turn
this into a proper LDAP URL). flags is a list of one or more comma delimited
keywords:

plain The default: Do not use a TLS secured connection at all; the default
port is 389.

starttls Use STARTTLS to secure the connection; the default port is 389.

ldaptls Tunnel LDAP through a TLS connection; the default port is 636.

ntds On Windows authenticate the LDAP connection using the Active
Directory with the current user.

areconly On Windows use only the A or AAAA record when resolving the
LDAP server name.

Note that in an URL style specification the scheme ldaps:// refers to START-
TLS and not to LDAP-over-TLS.

--ldaptimeout secs

Specify the number of seconds to wait for an LDAP query before timing out.
The default are 15 seconds. 0 will never timeout.

--add-servers

This option makes dirmngr add any servers it discovers when validating certifi-
cates against CRLs to the internal list of servers to consult for certificates and
CRLs. This option should in general not be used.

This option might be useful when trying to validate a certificate that has a
CRL distribution point that points to a server that is not already listed in the
ldapserverlist. Dirmngr will always go to this server and try to download the
CRL, but chances are high that the certificate used to sign the CRL is located
on the same server. So if dirmngr doesn’t add that new server to list, it will
often not be able to verify the signature of the CRL unless the --add-servers
option is used.

Caveat emptor: Using this option may enable denial-of-service attacks and leak
search requests to unknown third parties. This is because arbitrary servers are
added to the internal list of LDAP servers which in turn is used for all unspecific
LDAP queries as well as a fallback for queries which did not return a result.

--allow-ocsp

This option enables OCSP support if requested by the client.

32 Using the GNU Privacy Guard

OCSP requests are rejected by default because they may violate the privacy of
the user; for example it is possible to track the time when a user is reading a
mail.

--ocsp-responder url

Use url as the default OCSP Responder if the certificate does not contain
information about an assigned responder. Note, that --ocsp-signer must
also be set to a valid certificate.

--ocsp-signer fpr|file

Use the certificate with the fingerprint fpr to check the responses of the default
OCSP Responder. Alternatively a filename can be given in which case the
response is expected to be signed by one of the certificates described in that
file. Any argument which contains a slash, dot or tilde is considered a filename.
Usual filename expansion takes place: A tilde at the start followed by a slash is
replaced by the content of HOME, no slash at start describes a relative filename
which will be searched at the home directory. To make sure that the file is
searched in the home directory, either prepend the name with "./" or use a
name which contains a dot.

If a response has been signed by a certificate described by these fingerprints no
further check upon the validity of this certificate is done.

The format of the FILE is a list of SHA-1 fingerprint, one per line with optional
colons between the bytes. Empty lines and lines prefix with a hash mark are
ignored.

--ocsp-max-clock-skew n

The number of seconds a skew between the OCSP responder and them local
clock is accepted. Default is 600 (10 minutes).

--ocsp-max-period n

Seconds a response is at maximum considered valid after the time given in the
thisUpdate field. Default is 7776000 (90 days).

--ocsp-current-period n

The number of seconds an OCSP response is considered valid after the time
given in the NEXT UPDATE datum. Default is 10800 (3 hours).

--max-replies n

Do not return more that n items in one query. The default is 10.

--ignore-cert-extension oid

Add oid to the list of ignored certificate extensions. The oid is expected to be
in dotted decimal form, like 2.5.29.3. This option may be used more than
once. Critical flagged certificate extensions matching one of the OIDs in the
list are treated as if they are actually handled and thus the certificate won’t
be rejected due to an unknown critical extension. Use this option with care
because extensions are usually flagged as critical for a reason.

--ignore-crl-extension oid

Add oid to the list of ignored CRL extensions. The oid is expected to be in
dotted decimal form. Critical flagged CRL extensions matching one of the OIDs

Chapter 3: Invoking DIRMNGR 33

in the list are treated as if they are actually handled and thus the certificate
won’t be rejected due to an unknown critical extension. Use this option with
care because extensions are usually flagged as critical for a reason.

--ignore-cert fpr|file

Entirely ignore certificates with the fingerprint fpr. As an alternative to the
fingerprint a filename can be given in which case all certificates described in
that file are ignored. Any argument which contains a slash, dot or tilde is
considered a filename. Usual filename expansion takes place: A tilde at the
start followed by a slash is replaced by the content of HOME, no slash at start
describes a relative filename which will be searched at the home directory. To
make sure that the file is searched in the home directory, either prepend the
name with "./" or use a name which contains a dot. The format of such a file is
a list of SHA-1 fingerprint, one per line with optional colons between the bytes.
Empty lines and lines prefixed with a hash mark are ignored.

This option is useful as a quick workaround to exclude certain certificates from
the system store.

--hkp-cacert file

Use the root certificates in file for verification of the TLS certificates used with
hkps (keyserver access over TLS). If the file is in PEM format a suffix of .pem
is expected for file. This option may be given multiple times to add more root
certificates. Tilde expansion is supported.

If no hkp-cacert directive is present, dirmngr will use the system CAs.

3.3 Configuration

Dirmngr makes use of several directories when running in daemon mode: There are a few
configuration files to control the operation of dirmngr. By default they may all be found in
the current home directory (see [option –homedir], page 4).

‘dirmngr.conf’
This is the standard configuration file read by dirmngr on startup. It may
contain any valid long option; the leading two dashes may not be entered and
the option may not be abbreviated. This file is also read after a SIGHUP however
not all options will actually have an effect. This default name may be changed
on the command line (see [option –options], page 4). You should backup this
file.

‘/etc/gnupg/trusted-certs’
This directory should be filled with certificates of Root CAs you are trusting in
checking the CRLs and signing OCSP Responses.

Usually these are the same certificates you use with the applications making use
of dirmngr. It is expected that each of these certificate files contain exactly one
DER encoded certificate in a file with the suffix ‘.crt’ or ‘.der’. dirmngr reads
those certificates on startup and when given a SIGHUP. Certificates which are
not readable or do not make up a proper X.509 certificate are ignored; see the
log file for details.

34 Using the GNU Privacy Guard

Applications using dirmngr (e.g. gpgsm) can request these certificates to com-
plete a trust chain in the same way as with the extra-certs directory (see below).

Note that for OCSP responses the certificate specified using the option
‘--ocsp-signer’ is always considered valid to sign OCSP requests.

‘/etc/gnupg/extra-certs’
This directory may contain extra certificates which are preloaded into the in-
ternal cache on startup. Applications using dirmngr (e.g. gpgsm) can request
cached certificates to complete a trust chain. This is convenient in cases you
have a couple intermediate CA certificates or certificates usually used to sign
OCSP responses. These certificates are first tried before going out to the net to
look for them. These certificates must also be DER encoded and suffixed with
‘.crt’ or ‘.der’.

‘~/.gnupg/crls.d’
This directory is used to store cached CRLs. The ‘crls.d’ part will be created
by dirmngr if it does not exists but you need to make sure that the upper
directory exists.

Several options control the use of trusted certificates for TLS and CRLs. Here is an
Overview on the use and origin of those Root CA certificates:

System

These System root certificates are used by: FIXME

The origin of the system provided certificates depends on the platform. On
Windows all certificates from the Windows System Stores ROOT and CA are
used.

On other platforms the certificates are read from the first file found form this
list: ‘/etc/ssl/ca-bundle.pem’, ‘/etc/ssl/certs/ca-certificates.crt’,
‘/etc/pki/tls/cert.pem’, ‘/usr/local/share/certs/ca-root-nss.crt’,
‘/etc/ssl/cert.pem’.

GnuPG

The GnuPG specific certificates stored in the directory ‘/etc/gnupg/trusted-certs’
are only used to validate CRLs.

OpenPGP keyserver
For accessing the OpenPGP keyservers the only certificates used are those set
with the configuration option ‘hkp-cacert’.

OpenPGP keyserver pool
This is usually only one certificate read from the file ‘/usr/local/share/gnupg/gnupg/sks-keyservers.netCA.pem’.
If this certificate exists it is used to access the special keyservers
hkps.pool.sks-keyservers.net (or ‘hkps://keys.gnupg.net’).

Please note that gpgsm accepts Root CA certificates for its own purposes only if they are
listed in its file ‘trustlist.txt’. dirmngr does not make use of this list - except FIXME.

To be able to see diagnostics it is often useful to put at least the following lines into the
configuration file ‘~/gnupg/dirmngr.conf’:

Chapter 3: Invoking DIRMNGR 35

log-file ~/dirmngr.log

verbose

You may want to check the log file to see whether all desired root CA certificates are
correctly loaded.

To be able to perform OCSP requests you probably want to add the line:

allow-ocsp

To make sure that new options are read or that after the installation of a new GnuPG
versions the right dirmngr version is running, you should kill an existing dirmngr so that a
new instance is started as needed by the other components:

gpgconf --kill dirmngr

Direct interfaction with the dirmngr is possible by using the command

gpg-connect-agent --dirmngr

Enter HELP at the prompt to see a list of commands and enter HELP followed by a
command name to get help on that command.

3.4 Use of signals

A running dirmngr may be controlled by signals, i.e. using the kill command to send a
signal to the process.

Here is a list of supported signals:

SIGHUP This signal flushes all internally cached CRLs as well as any cached certificates.
Then the certificate cache is reinitialized as on startup. Options are re-read
from the configuration file. Instead of sending this signal it is better to use

gpgconf --reload dirmngr

SIGTERM Shuts down the process but waits until all current requests are fulfilled. If the
process has received 3 of these signals and requests are still pending, a shutdown
is forced. You may also use

gpgconf --kill dirmngr

instead of this signal

SIGINT Shuts down the process immediately.

SIGUSR1 This prints some caching statistics to the log file.

3.5 Examples

Here is an example on how to show dirmngr’s internal table of OpenPGP keyserver ad-
dresses. The output is intended for debugging purposes and not part of a defined API.

gpg-connect-agent --dirmngr ’keyserver --hosttable’ /bye

To inhibit the use of a particular host you have noticed in one of the keyserver pools,
you may use

gpg-connect-agent --dirmngr ’keyserver --dead pgpkeys.bnd.de’ /bye

The description of the keyserver command can be printed using

gpg-connect-agent --dirmngr ’help keyserver’ /bye

36 Using the GNU Privacy Guard

3.6 Dirmngr’s Assuan Protocol

Assuan is the IPC protocol used to access dirmngr. This is a description of the commands
implemented by dirmngr.

3.6.1 Return the certificate(s) found

Lookup certificate. To allow multiple patterns (which are ORed) quoting is required: Spaces
are to be translated into "+" or into "%20"; obviously this requires that the usual escape
quoting rules are applied. The server responds with:

S: D <DER encoded certificate>

S: END

S: D <second DER encoded certificate>

S: END

S: OK

In this example 2 certificates are returned. The server may return any number of certifi-
cates; OK will also be returned when no certificates were found. The dirmngr might return
a status line

S: S TRUNCATED <n>

To indicate that the output was truncated to N items due to a limitation of the server
or by an arbitrary set limit.

The option ‘--url’ may be used if instead of a search pattern a complete URL to the
certificate is known:

C: LOOKUP --url CN%3DWerner%20Koch,o%3DIntevation%20GmbH,c%3DDE?userCertificate

If the option ‘--cache-only’ is given, no external lookup is done so that only certificates
from the cache are returned.

With the option ‘--single’, the first and only the first match will be returned. Unless
option ‘--cache-only’ is also used, no local lookup will be done in this case.

3.6.2 Validate a certificate using a CRL or OCSP

ISVALID [--only-ocsp] [--force-default-responder] certid|certfpr

Check whether the certificate described by the certid has been revoked. Due to caching,
the Dirmngr is able to answer immediately in most cases.

The certid is a hex encoded string consisting of two parts, delimited by a single dot.
The first part is the SHA-1 hash of the issuer name and the second part the serial number.

Alternatively the certificate’s SHA-1 fingerprint certfpr may be given in which case an
OCSP request is done before consulting the CRL. If the option ‘--only-ocsp’ is given,
no fallback to a CRL check will be used. If the option ‘--force-default-responder’ is
given, only the default OCSP responder will be used and any other methods of obtaining
an OCSP responder URL won’t be used.

Common return values are:

GPG_ERR_NO_ERROR (0)

This is the positive answer: The certificate is not revoked and we have an up-
to-date revocation list for that certificate. If OCSP was used the responder
confirmed that the certificate has not been revoked.

Chapter 3: Invoking DIRMNGR 37

GPG_ERR_CERT_REVOKED

This is the negative answer: The certificate has been revoked. Either it is in a
CRL and that list is up to date or an OCSP responder informed us that it has
been revoked.

GPG_ERR_NO_CRL_KNOWN

No CRL is known for this certificate or the CRL is not valid or out of date.

GPG_ERR_NO_DATA

The OCSP responder returned an “unknown” status. This means that it is not
aware of the certificate’s status.

GPG_ERR_NOT_SUPPORTED

This is commonly seen if OCSP support has not been enabled in the configu-
ration.

If DirMngr has not enough information about the given certificate (which is the case for
not yet cached certificates), it will inquire the missing data:

S: INQUIRE SENDCERT <CertID>

C: D <DER encoded certificate>

C: END

A client should be aware that DirMngr may ask for more than one certificate.

If Dirmngr has a certificate but the signature of the certificate could not been validated
because the root certificate is not known to dirmngr as trusted, it may ask back to see
whether the client trusts this the root certificate:

S: INQUIRE ISTRUSTED <CertHexfpr>

C: D 1

C: END

Only this answer will let Dirmngr consider the certificate as valid.

3.6.3 Validate a certificate using a CRL

Check whether the certificate with FINGERPRINT (SHA-1 hash of the entire X.509 cer-
tificate blob) is valid or not by consulting the CRL responsible for this certificate. If the
fingerprint has not been given or the certificate is not known, the function inquires the
certificate using:

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request (which should match
FINGERPRINT) as a binary blob. Processing then takes place without further interaction;
in particular dirmngr tries to locate other required certificate by its own mechanism which
includes a local certificate store as well as a list of trusted root certificates.

The return code is 0 for success; i.e. the certificate has not been revoked or one of the usual
error codes from libgpg-error.

38 Using the GNU Privacy Guard

3.6.4 Validate a certificate using OCSP

CHECKOCSP [--force-default-responder] [fingerprint]

Check whether the certificate with fingerprint (the SHA-1 hash of the entire X.509
certificate blob) is valid by consulting the appropriate OCSP responder. If the fingerprint
has not been given or the certificate is not known by Dirmngr, the function inquires the
certificate using:

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request (which should match
fingerprint) as a binary blob. Processing then takes place without further interaction; in
particular dirmngr tries to locate other required certificates by its own mechanism which
includes a local certificate store as well as a list of trusted root certificates.

If the option ‘--force-default-responder’ is given, only the default OCSP
responder is used. This option is the per-command variant of the global option
‘--ignore-ocsp-service-url’.

The return code is 0 for success; i.e. the certificate has not been revoked or one of the usual
error codes from libgpg-error.

3.6.5 Put a certificate into the internal cache

Put a certificate into the internal cache. This command might be useful if a client knows
in advance certificates required for a test and wants to make sure they get added to the
internal cache. It is also helpful for debugging. To get the actual certificate, this command
immediately inquires it using

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request as a binary blob.

The return code is 0 for success; i.e. the certificate has not been successfully cached or one
of the usual error codes from libgpg-error.

3.6.6 Validate a certificate for debugging

Validate a certificate using the certificate validation function used internally by dirmngr.
This command is only useful for debugging. To get the actual certificate, this command
immediately inquires it using

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request as a binary blob.

Chapter 4: Invoking GPG 39

4 Invoking GPG

gpg is the OpenPGP part of the GNU Privacy Guard (GnuPG). It is a tool to provide
digital encryption and signing services using the OpenPGP standard. gpg features complete
key management and all the bells and whistles you would expect from a full OpenPGP
implementation.

There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG 2.x
supports modern encryption algorithms and thus should be preferred over GnuPG 1.x. You
only need to use GnuPG 1.x if your platform doesn’t support GnuPG 2.x, or you need
support for some features that GnuPG 2.x has deprecated, e.g., decrypting data created
with PGP-2 keys.

If you are looking for version 1 of GnuPG, you may find that version installed under the
name gpg1.

See [Option Index], page 225, for an index to gpg’s commands and options.

4.1 Commands

Commands are not distinguished from options except for the fact that only one command is
allowed. Generally speaking, irrelevant options are silently ignored, and may not be checked
for correctness.

gpg may be run with no commands. In this case it will print a warning perform a
reasonable action depending on the type of file it is given as input (an encrypted message
is decrypted, a signature is verified, a file containing keys is listed, etc.).

If you run into any problems, please add the option ‘--verbose’ to the invocation to see
more diagnostics.

4.1.1 Commands not specific to the function

--version

Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help

-h Print a usage message summarizing the most useful command-line options.
Note that you cannot arbitrarily abbreviate this command (though you can use
its short form ‘-h’).

--warranty

Print warranty information.

--dump-options

Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

4.1.2 Commands to select the type of operation

--sign

-s Sign a message. This command may be combined with ‘--encrypt’ (to sign
and encrypt a message), ‘--symmetric’ (to sign and symmetrically encrypt

40 Using the GNU Privacy Guard

a message), or both ‘--encrypt’ and ‘--symmetric’ (to sign and encrypt a
message that can be decrypted using a secret key or a passphrase). The signing
key is chosen by default or can be set explicitly using the ‘--local-user’ and
‘--default-key’ options.

--clear-sign

--clearsign

Make a cleartext signature. The content in a cleartext signature is readable
without any special software. OpenPGP software is only needed to verify the
signature. cleartext signatures may modify end-of-line whitespace for platform
independence and are not intended to be reversible. The signing key is chosen by
default or can be set explicitly using the ‘--local-user’ and ‘--default-key’
options.

--detach-sign

-b Make a detached signature.

--encrypt

-e Encrypt data to one or more public keys. This command may be combined
with ‘--sign’ (to sign and encrypt a message), ‘--symmetric’ (to encrypt a
message that can be decrypted using a secret key or a passphrase), or ‘--sign’
and ‘--symmetric’ together (for a signed message that can be decrypted using
a secret key or a passphrase). ‘--recipient’ and related options specify which
public keys to use for encryption.

--symmetric

-c Encrypt with a symmetric cipher using a passphrase. The default symmetric
cipher used is AES-128, but may be chosen with the ‘--cipher-algo’ option.
This command may be combined with ‘--sign’ (for a signed and symmetri-
cally encrypted message), ‘--encrypt’ (for a message that may be decrypted
via a secret key or a passphrase), or ‘--sign’ and ‘--encrypt’ together (for a
signed message that may be decrypted via a secret key or a passphrase). gpg

caches the passphrase used for symmetric encryption so that a decrypt opera-
tion may not require that the user needs to enter the passphrase. The option
‘--no-symkey-cache’ can be used to disable this feature.

--store Store only (make a simple literal data packet).

--decrypt

-d Decrypt the file given on the command line (or STDIN if no file is specified) and
write it to STDOUT (or the file specified with ‘--output’). If the decrypted file
is signed, the signature is also verified. This command differs from the default
operation, as it never writes to the filename which is included in the file and it
rejects files that don’t begin with an encrypted message.

--verify Assume that the first argument is a signed file and verify it without generating
any output. With no arguments, the signature packet is read from STDIN. If
only one argument is given, the specified file is expected to include a complete
signature.

With more than one argument, the first argument should specify a file with a
detached signature and the remaining files should contain the signed data. To

Chapter 4: Invoking GPG 41

read the signed data from STDIN, use ‘-’ as the second filename. For security
reasons, a detached signature will not read the signed material from STDIN if
not explicitly specified.

Note: If the option ‘--batch’ is not used, gpg may assume that a single ar-
gument is a file with a detached signature, and it will try to find a matching
data file by stripping certain suffixes. Using this historical feature to verify a
detached signature is strongly discouraged; you should always specify the data
file explicitly.

Note: When verifying a cleartext signature, gpg verifies only what makes up the
cleartext signed data and not any extra data outside of the cleartext signature
or the header lines directly following the dash marker line. The option --output

may be used to write out the actual signed data, but there are other pitfalls
with this format as well. It is suggested to avoid cleartext signatures in favor
of detached signatures.

Note: With option ‘--batch’ he verification of signatures stops at the first bad
signature. This is a safe default for unattended processing but sometimes a
status for all signatures is needed. To override this early bailout use the option
‘--proc-all-sigs’.

Note: To check whether a file was signed by a certain key the option
‘--assert-signer’ can be used. As an alternative the gpgv tool can be used.
gpgv is designed to compare signed data against a list of trusted keys and
returns with success only for a good signature. It has its own manual page.

--multifile

This modifies certain other commands to accept multiple files for processing
on the command line or read from STDIN with each filename on a separate
line. This allows for many files to be processed at once. ‘--multifile’ may
currently be used along with ‘--verify’, ‘--encrypt’, and ‘--decrypt’. Note
that ‘--multifile --verify’ may not be used with detached signatures.

--verify-files

Identical to ‘--multifile --verify’.

--encrypt-files

Identical to ‘--multifile --encrypt’.

--decrypt-files

Identical to ‘--multifile --decrypt’.

--list-keys

-k

--list-public-keys

List the specified keys. If no keys are specified, then all keys from the configured
public keyrings are listed.

Never use the output of this command in scripts or other programs. The
output is intended only for humans and its format is likely to change. The
‘--with-colons’ option emits the output in a stable, machine-parseable for-
mat, which is intended for use by scripts and other programs.

42 Using the GNU Privacy Guard

--list-secret-keys

-K List the specified secret keys. If no keys are specified, then all known secret
keys are listed. A # after the initial tags sec or ssb means that the secret key or
subkey is currently not usable. We also say that this key has been taken offline
(for example, a primary key can be taken offline by exporting the key using the
command ‘--export-secret-subkeys’). A > after these tags indicate that the
key is stored on a smartcard. See also ‘--list-keys’.

--check-signatures

--check-sigs

Same as ‘--list-keys’, but the key signatures are verified and listed too.
Note that for performance reasons the revocation status of a signing key is
not shown. This command has the same effect as using ‘--list-keys’ with
‘--with-sig-check’.

The status of the verification is indicated by a flag directly following the "sig"
tag (and thus before the flags described below. A "!" indicates that the signa-
ture has been successfully verified, a "-" denotes a bad signature and a "%" is
used if an error occurred while checking the signature (e.g. a non supported
algorithm). Signatures where the public key is not available are not listed; to
see their keyids the command ‘--list-sigs’ can be used.

For each signature listed, there are several flags in between the signature
status flag and keyid. These flags give additional information about each key
signature. From left to right, they are the numbers 1-3 for certificate check
level (see ‘--ask-cert-level’), "L" for a local or non-exportable signature
(see ‘--lsign-key’), "R" for a nonRevocable signature (see the ‘--edit-key’
command "nrsign"), "P" for a signature that contains a policy URL (see
‘--cert-policy-url’), "N" for a signature that contains a notation (see
‘--cert-notation’), "X" for an eXpired signature (see ‘--ask-cert-expire’),
and the numbers 1-9 or "T" for 10 and above to indicate trust signature levels
(see the ‘--edit-key’ command "tsign").

--locate-keys

--locate-external-keys

Locate the keys given as arguments. This command basically uses the same
algorithm as used when locating keys for encryption and may thus be used to
see what keys gpg might use. In particular external methods as defined by
‘--auto-key-locate’ are used to locate a key if the arguments comain valid
mail addresses. Only public keys are listed.

The variant ‘--locate-external-keys’ does not consider a locally existing
key and can thus be used to force the refresh of a key via the defined external
methods. If a fingerprint is given and and the methods defined by –auto-key-
locate define LDAP servers, the key is fetched from these resources; defined
non-LDAP keyservers are skipped.

--show-keys

This commands takes OpenPGP keys as input and prints information about
them in the same way the command ‘--list-keys’ does for locally stored key.
In addition the list options show-unusable-uids, show-unusable-subkeys,

Chapter 4: Invoking GPG 43

show-notations and show-policy-urls are also enabled. As usual for
automated processing, this command should be combined with the option
‘--with-colons’.

--fingerprint

List all keys (or the specified ones) along with their fingerprints. This is the
same output as ‘--list-keys’ but with the additional output of a line with
the fingerprint. May also be combined with ‘--check-signatures’. If this
command is given twice, the fingerprints of all secondary keys are listed too.
This command also forces pretty printing of fingerprints if the keyid format has
been set to "none".

--list-packets

List only the sequence of packets. This command is only useful for debugging.
When used with option ‘--verbose’ the actual MPI values are dumped and
not only their lengths. Note that the output of this command may change with
new releases.

--edit-card

--card-edit

Present a menu to work with a smartcard. The subcommand "help" provides
an overview on available commands. For a detailed description, please see the
Card HOWTO at https://gnupg.org/documentation/howtos.html#GnuPG-
cardHOWTO . Please note that the command "openpgp" can be used to
switch to the OpenPGP application of cards which by default are presenting
another application (e.g. PIV).

--card-status

Show the content of the smart card.

--change-pin

Present a menu to allow changing the PIN of a smartcard. This functionality is
also available as the subcommand "passwd" with the ‘--edit-card’ command.

--delete-keys name

Remove key from the public keyring. In batch mode either ‘--yes’ is required or
the key must be specified by fingerprint. This is a safeguard against accidental
deletion of multiple keys. If the exclamation mark syntax is used with the
fingerprint of a subkey only that subkey is deleted; if the exclamation mark is
used with the fingerprint of the primary key the entire public key is deleted.

--delete-secret-keys name

Remove key from the secret keyring. In batch mode the key must be specified by
fingerprint. The option ‘--yes’ can be used to advise gpg-agent not to request
a confirmation. This extra pre-caution is done because gpg can’t be sure that
the secret key (as controlled by gpg-agent) is only used for the given OpenPGP
public key. If the exclamation mark syntax is used with the fingerprint of a
subkey only the secret part of that subkey is deleted; if the exclamation mark is
used with the fingerprint of the primary key only the secret part of the primary
key is deleted.

44 Using the GNU Privacy Guard

--delete-secret-and-public-key name

Same as ‘--delete-key’, but if a secret key exists, it will be removed first. In
batch mode the key must be specified by fingerprint. The option ‘--yes’ can
be used to advise gpg-agent not to request a confirmation.

--export Either export all keys from all keyrings (default keyring and those registered
via option ‘--keyring’), or if at least one name is given, those of the given
name. The exported keys are written to STDOUT or to the file given with
option ‘--output’. Use together with ‘--armor’ to mail those keys.

--send-keys keyIDs

Similar to ‘--export’ but sends the keys to a keyserver. Fingerprints may be
used instead of key IDs. Don’t send your complete keyring to a keyserver —
select only those keys which are new or changed by you. If no keyIDs are given,
gpg does nothing.

Take care: Keyservers are by design write only systems and thus it is not
possible to ever delete keys once they have been send to a keyserver.

--export-secret-keys

--export-secret-subkeys

Same as ‘--export’, but exports the secret keys instead. The exported keys are
written to STDOUT or to the file given with option ‘--output’. This command
is often used along with the option ‘--armor’ to allow for easy printing of the
key for paper backup; however the external tool paperkey does a better job of
creating backups on paper. Note that exporting a secret key can be a security
risk if the exported keys are sent over an insecure channel.

The second form of the command has the special property to render the secret
part of the primary key useless; this is a GNU extension to OpenPGP and
other implementations can not be expected to successfully import such a key.
Its intended use is in generating a full key with an additional signing subkey on
a dedicated machine. This command then exports the key without the primary
key to the main machine.

GnuPG may ask you to enter the passphrase for the key. This is required,
because the internal protection method of the secret key is different from the
one specified by the OpenPGP protocol.

--export-ssh-key

This command is used to export a key in the OpenSSH public key format.
It requires the specification of one key by the usual means and exports the
latest valid subkey which has an authentication capability to STDOUT or to
the file given with option ‘--output’. That output can directly be added to
ssh’s ‘authorized_key’ file.

By specifying the key to export using a key ID or a fingerprint suffixed with
an exclamation mark (!), a specific subkey or the primary key can be exported.
This does not even require that the key has the authentication capability flag
set.

Chapter 4: Invoking GPG 45

--import

--fast-import

Import/merge keys. This adds the given keys to the keyring. The fast version
is currently just a synonym.

There are a few other options which control how this command works. Most
notable here is the ‘--import-options merge-only’ option which does not
insert new keys but does only the merging of new signatures, user-IDs and
subkeys.

--receive-keys keyIDs

--recv-keys keyIDs

Import the keys with the given keyIDs from a keyserver.

--refresh-keys

Request updates from a keyserver for keys that already exist on the local
keyring. This is useful for updating a key with the latest signatures, user
IDs, etc. Calling this with no arguments will refresh the entire keyring.

--search-keys names

Search the keyserver for the given names. Multiple names given here will be
joined together to create the search string for the keyserver. Note that key-
servers search for names in a different and simpler way than gpg does. The
best choice is to use a mail address. Due to data privacy reasons keyservers
may even not even allow searching by user id or mail address and thus may
only return results when being used with the ‘--recv-key’ command to search
by key fingerprint or keyid.

--fetch-keys URIs

Retrieve keys located at the specified URIs. Note that different installations
of GnuPG may support different protocols (HTTP, FTP, LDAP, etc.). When
using HTTPS the system provided root certificates are used by this command.

--update-trustdb

Do trust database maintenance. This command iterates over all keys and builds
the Web of Trust. This is an interactive command because it may have to ask
for the "ownertrust" values for keys. The user has to give an estimation of how
far she trusts the owner of the displayed key to correctly certify (sign) other
keys. GnuPG only asks for the ownertrust value if it has not yet been assigned
to a key. Using the ‘--edit-key’ menu, the assigned value can be changed at
any time.

--check-trustdb

Do trust database maintenance without user interaction. From time to
time the trust database must be updated so that expired keys or signatures
and the resulting changes in the Web of Trust can be tracked. Normally,
GnuPG will calculate when this is required and do it automatically unless
‘--no-auto-check-trustdb’ is set. This command can be used to force a
trust database check at any time. The processing is identical to that of
‘--update-trustdb’ but it skips keys with a not yet defined "ownertrust".

46 Using the GNU Privacy Guard

For use with cron jobs, this command can be used together with ‘--batch’ in
which case the trust database check is done only if a check is needed. To force
a run even in batch mode add the option ‘--yes’.

--export-ownertrust

Send the ownertrust values to STDOUT. This is useful for backup purposes
as these values are the only ones which can’t be re-created from a corrupted
trustdb. Example:

gpg

--export-ownertrust > otrust.txt

--import-ownertrust

Update the trustdb with the ownertrust values stored in files (or STDIN if
not given); existing values will be overwritten. In case of a severely damaged
trustdb and if you have a recent backup of the ownertrust values (e.g. in the
file ‘otrust.txt’), you may re-create the trustdb using these commands:

cd ~/.gnupg

rm trustdb.gpg

gpg

--import-ownertrust < otrust.txt

--rebuild-keydb-caches

When updating from version 1.0.6 to 1.0.7 this command should be used to
create signature caches in the keyring. It might be handy in other situations
too.

--print-md algo

--print-mds

Print message digest of algorithm algo for all given files or STDIN. With the
second form (or a deprecated "*" for algo) digests for all available algorithms
are printed.

--gen-random 0|1|2|16|30 count

Emit count random bytes of the given quality level 0, 1 or 2. If count is not
given or zero, an endless sequence of random bytes will be emitted. If used
with ‘--armor’ the output will be base64 encoded. The special level 16 uses
a quality level of 1 and outputs an endless stream of hex-encoded octets. The
special level 30 outputs random as 30 zBase-32 characters.

--gen-prime mode bits

Use the source, Luke :-). The output format is subject to change with any
release.

--enarmor

--dearmor

Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor. This
is a GnuPG extension to OpenPGP and in general not very useful. The
‘--dearmor’ command can also be used to dearmor PEM armors.

--unwrap This option modifies the command ‘--decrypt’ to output the original message
with the encryption layer removed. Thus the output will be an OpenPGP data

Chapter 4: Invoking GPG 47

structure which often means a signed OpenPGP message. Note that this option
may or may not remove a compression layer which is often found beneath the
encryption layer.

--tofu-policy {auto|good|unknown|bad|ask} keys

Set the TOFU policy for all the bindings associated with the specified keys.
For more information about the meaning of the policies, see [trust-model-tofu],
page 63. The keys may be specified either by their fingerprint (preferred) or
their keyid.

4.1.3 How to manage your keys

This section explains the main commands for key management.

--quick-generate-key user-id [algo [usage [expire]]]

--quick-gen-key

This is a simple command to generate a standard key with one user id. In
contrast to ‘--generate-key’ the key is generated directly without the need to
answer a bunch of prompts. Unless the option ‘--yes’ is given, the key creation
will be canceled if the given user id already exists in the keyring.

If invoked directly on the console without any special options an answer to a
“Continue?” style confirmation prompt is required. In case the user id already
exists in the keyring a second prompt to force the creation of the key will show
up.

If algo or usage are given, only the primary key is created and no prompts are
shown. To specify an expiration date but still create a primary and subkey use
“default” or “future-default” for algo and “default” for usage. For a description
of these optional arguments see the command --quick-add-key. The usage
accepts also the value “cert” which can be used to create a certification only
primary key; the default is to a create certification and signing key.

The expire argument can be used to specify an expiration date for the key.
Several formats are supported; commonly the ISO formats “YYYY-MM-DD”
or “YYYYMMDDThhmmss” are used. To make the key expire in N seconds, N
days, N weeks, N months, or N years use “seconds=N”, “Nd”, “Nw”, “Nm”, or
“Ny” respectively. Not specifying a value, or using “-” results in a key expiring
in a reasonable default interval. The values “never”, “none” can be used for no
expiration date.

If this command is used with ‘--batch’, ‘--pinentry-mode’ has been
set to loopback, and one of the passphrase options (‘--passphrase’,
‘--passphrase-fd’, or ‘--passphrase-file’) is used, the supplied passphrase
is used for the new key and the agent does not ask for it. To create a key
without any protection --passphrase ’’ may be used.

To create an OpenPGP key from the keys available on the currently inserted
smartcard, the special string “card” can be used for algo. If the card features an
encryption and a signing key, gpg will figure them out and creates an OpenPGP
key consisting of the usual primary key and one subkey. This works only with
certain smartcards. Note that the interactive ‘--full-gen-key’ command al-

48 Using the GNU Privacy Guard

lows one to do the same but with greater flexibility in the selection of the
smartcard keys.

Note that it is possible to create a primary key and a subkey using non-default
algorithms by using “default” and changing the default parameters using the
option ‘--default-new-key-algo’.

--quick-set-expire fpr expire [*|subfprs]

With two arguments given, directly set the expiration time of the primary key
identified by fpr to expire. To remove the expiration time 0 can be used. With
three arguments and the third given as an asterisk, the expiration time of all
non-revoked and not yet expired subkeys are set to expire. With more than two
arguments and a list of fingerprints given for subfprs, all non-revoked subkeys
matching these fingerprints are set to expire.

--quick-add-key fpr [algo [usage [expire]]]

Directly add a subkey to the key identified by the fingerprint fpr. Without the
optional arguments an encryption subkey is added. If any of the arguments are
given a more specific subkey is added.

algo may be any of the supported algorithms or curve names given in the for-
mat as used by key listings. To use the default algorithm the string “default”
or “-” can be used. Supported algorithms are “rsa”, “dsa”, “elg”, “ed25519”,
“cv25519”, and other ECC curves. For example the string “rsa” adds an RSA
key with the default key length; a string “rsa4096” requests that the key length
is 4096 bits. The string “future-default” is an alias for the algorithm which will
likely be used as default algorithm in future versions of gpg. To list the sup-
ported ECC curves the command gpg --with-colons --list-config curve

can be used.

Depending on the given algo the subkey may either be an encryption subkey or
a signing subkey. If an algorithm is capable of signing and encryption and such
a subkey is desired, a usage string must be given. This string is either “default”
or “-” to keep the default or a comma delimited list (or space delimited list) of
keywords: “sign” for a signing subkey, “auth” for an authentication subkey, and
“encr” for an encryption subkey (“encrypt” can be used as alias for “encr”).
The valid combinations depend on the algorithm.

The expire argument can be used to specify an expiration date for the key.
Several formats are supported; commonly the ISO formats “YYYY-MM-DD”
or “YYYYMMDDThhmmss” are used. To make the key expire in N seconds, N
days, N weeks, N months, or N years use “seconds=N”, “Nd”, “Nw”, “Nm”, or
“Ny” respectively. Not specifying a value, or using “-” results in a key expiring
in a reasonable default interval. The values “never”, “none” can be used for no
expiration date.

--quick-add-adsk fpr adskfpr

Directly add an Additional Decryption Subkey to the key identified by the
fingerprint fpr. adskfpr is the fingerprint of another key’s encryption subkey.
A subkey is commonly used here because by default a primary key has no
encryption capability. Use the option ‘--with-subkey-fingerprint’ with a
list command to display the subkey fingerprints. If the string "default" is used

Chapter 4: Invoking GPG 49

for adskfpr all missing ADSKs configured with ‘--default-new-key-adsk’ are
added.

--generate-key

--gen-key

Generate a new key pair using the current default parameters. This is the
standard command to create a new key. In addition to the key a revocation
certificate is created and stored in the ‘openpgp-revocs.d’ directory below the
GnuPG home directory.

--full-generate-key

--full-gen-key

Generate a new key pair with dialogs for all options. This is an extended version
of ‘--generate-key’.

There is also a feature which allows you to create keys in batch mode. See the
manual section “Unattended key generation” on how to use this.

--generate-revocation name

--gen-revoke name

Generate a revocation certificate for the complete key. To only revoke a subkey
or a key signature, use the ‘--edit’ command.

This command merely creates the revocation certificate so that it can be used
to revoke the key if that is ever needed. To actually revoke a key the created
revocation certificate needs to be merged with the key to revoke. This is done
by importing the revocation certificate using the ‘--import’ command. Then
the revoked key needs to be published, which is best done by sending the key
to a keyserver (command ‘--send-key’) and by exporting (‘--export’) it to a
file which is then send to frequent communication partners.

--generate-designated-revocation name

--desig-revoke name

Generate a designated revocation certificate for a key. This allows a user (with
the permission of the keyholder) to revoke someone else’s key.

--edit-key

Present a menu which enables you to do most of the key management related
tasks. It expects the specification of a key on the command line.

uid n Toggle selection of user ID or photographic user ID with index n.
Use * to select all and 0 to deselect all.

key n Toggle selection of subkey with index n or key ID n. Use * to select
all and 0 to deselect all.

sign Make a signature on key of user name. If the key is not yet signed by
the default user (or the users given with ‘-u’), the program displays
the information of the key again, together with its fingerprint and
asks whether it should be signed. This question is repeated for all
users specified with ‘-u’.

50 Using the GNU Privacy Guard

lsign Same as "sign" but the signature is marked as non-exportable and
will therefore never be used by others. This may be used to make
keys valid only in the local environment.

nrsign Same as "sign" but the signature is marked as non-revocable and
can therefore never be revoked.

tsign Make a trust signature. This is a signature that combines the
notions of certification (like a regular signature), and trust (like the
"trust" command). It is generally useful in distinct communities
or groups to implement the concept of a Trusted Introducer. For
more information please read the sections “Trust Signature” and
“Regular Expression” in RFC-4880.

Note that "l" (for local / non-exportable), "nr" (for non-revocable, and "t"
(for trust) may be freely mixed and prefixed to "sign" to create a signature of
any type desired.

If the option ‘--only-sign-text-ids’ is specified, then any non-text based
user ids (e.g., photo IDs) will not be selected for signing.

delsig Delete a signature. Note that it is not possible to retract a signa-
ture, once it has been send to the public (i.e. to a keyserver). In
that case you better use revsig.

revsig Revoke a signature. For every signature which has been gener-
ated by one of the secret keys, GnuPG asks whether a revocation
certificate should be generated.

check Check the signatures on all selected user IDs. With the extra option
selfsig only self-signatures are shown.

adduid Create an additional user ID.

addphoto Create a photographic user ID. This will prompt for a JPEG file
that will be embedded into the user ID. Note that a very large JPEG
will make for a very large key. Also note that some programs will
display your JPEG unchanged (GnuPG), and some programs will
scale it to fit in a dialog box (PGP).

showphoto
Display the selected photographic user ID.

deluid Delete a user ID or photographic user ID. Note that it is not possible
to retract a user id, once it has been send to the public (i.e. to a
keyserver). In that case you better use revuid.

revuid Revoke a user ID or photographic user ID.

primary Flag the current user id as the primary one, removes the primary
user id flag from all other user ids and sets the timestamp of all
affected self-signatures one second ahead. Note that setting a photo
user ID as primary makes it primary over other photo user IDs, and
setting a regular user ID as primary makes it primary over other
regular user IDs.

Chapter 4: Invoking GPG 51

keyserver Set a preferred keyserver for the specified user ID(s). This allows
other users to know where you prefer they get your key from. See
‘--keyserver-options honor-keyserver-url’ for more on how
this works. Setting a value of "none" removes an existing preferred
keyserver.

notation Set a name=value notation for the specified user ID(s). See
‘--cert-notation’ for more on how this works. Setting a value
of "none" removes all notations, setting a notation prefixed with
a minus sign (-) removes that notation, and setting a notation
name (without the =value) prefixed with a minus sign removes all
notations with that name.

pref List preferences from the selected user ID. This shows the actual
preferences, without including any implied preferences.

showpref More verbose preferences listing for the selected user ID. This shows
the preferences in effect by including the implied preferences of
3DES (cipher), SHA-1 (digest), and Uncompressed (compression)
if they are not already included in the preference list. In addition,
the preferred keyserver and signature notations (if any) are shown.

setpref string
Set the list of user ID preferences to string for all (or just
the selected) user IDs. Calling setpref with no arguments sets
the preference list to the default (either built-in or set via
‘--default-preference-list’), and calling setpref with "none"
as the argument sets an empty preference list. Use gpg--version

to get a list of available algorithms. Note that while you can
change the preferences on an attribute user ID (aka "photo ID"),
GnuPG does not select keys via attribute user IDs so these
preferences will not be used by GnuPG. Note that an unattended
version of this command is available as ‘--quick-update-pref’.

When setting preferences, you should list the algorithms in the
order which you’d like to see them used by someone else when en-
crypting a message to your key. If you don’t include 3DES, it will
be automatically added at the end. Note that there are many fac-
tors that go into choosing an algorithm (for example, your key may
not be the only recipient), and so the remote OpenPGP application
being used to send to you may or may not follow your exact chosen
order for a given message. It will, however, only choose an algo-
rithm that is present on the preference list of every recipient key.
See also the INTEROPERABILITY WITH OTHER OPENPGP
PROGRAMS section below.

addkey Add a subkey to this key.

addcardkey
Generate a subkey on a card and add it to this key.

52 Using the GNU Privacy Guard

keytocard Transfer the selected secret subkey (or the primary key if no subkey
has been selected) to a smartcard. The secret key in the keyring
will be replaced by a stub if the key could be stored successfully
on the card and you use the save command later. Only certain key
types may be transferred to the card. A sub menu allows you to
select on what card to store the key. Note that it is not possible
to get that key back from the card - if the card gets broken your
secret key will be lost unless you have a backup somewhere.

bkuptocard file
Restore the given file to a card. This command may be used to
restore a backup key (as generated during card initialization) to a
new card. In almost all cases this will be the encryption key. You
should use this command only with the corresponding public key
and make sure that the file given as argument is indeed the backup
to restore. You should then select 2 to restore as encryption key.
You will first be asked to enter the passphrase of the backup key
and then for the Admin PIN of the card.

keytotpm Transfer the selected secret subkey (or the primary key if no subkey
has been selected) to TPM form. The secret key in the keyring will
be replaced by the TPM representation of that key, which can only
be read by the particular TPM that created it (so the keyfile now
becomes locked to the laptop containing the TPM). Only certain
key types may be transferred to the TPM (all TPM 2.0 systems are
mandated to have the rsa2048 and nistp256 algorithms but newer
TPMs may have more). Note that the key itself is not transferred
into the TPM, merely encrypted by the TPM in-place, so if the
keyfile is deleted, the key will be lost. Once transferred to TPM
representation, the key file can never be converted back to non-
TPM form and the key will die when the TPM does, so you should
first have a backup on secure offline storage of the actual secret
key file before conversion. It is essential to use the physical system
TPM that you have rw permission on the TPM resource manager
device (/dev/tpmrm0). Usually this means you must be a member
of the tss group.

delkey Remove a subkey (secondary key). Note that it is not possible to
retract a subkey, once it has been send to the public (i.e. to a
keyserver). In that case you better use revkey. Also note that this
only deletes the public part of a key.

revkey Revoke a subkey.

expire Change the key or subkey expiration time. If a subkey is selected,
the expiration time of this subkey will be changed. With no selec-
tion, the key expiration of the primary key is changed.

trust Change the owner trust value for the key. This updates the trust-db
immediately and no save is required.

Chapter 4: Invoking GPG 53

disable
enable Disable or enable an entire key. A disabled key can not normally

be used for encryption.

addrevoker
Add a designated revoker to the key. This takes one optional argu-
ment: "sensitive". If a designated revoker is marked as sensitive,
it will not be exported by default (see export-options).

addadsk Add an Additional Decryption Subkey. The user is asked to enter
the fingerprint of another encryption subkey. Note that the exact
fingerprint of another key’s encryption subkey needs to be entered.
This is because commonly the primary key has no encryption ca-
pability. Use the option ‘--with-subkey-fingerprint’ with a list
command to display the subkey fingerprints.

passwd Change the passphrase of the secret key.

toggle This is dummy command which exists only for backward compati-
bility.

clean Compact (by removing all signatures except the selfsig) any user
ID that is no longer usable (e.g. revoked, or expired). Then, re-
move any signatures that are not usable by the trust calculations.
Specifically, this removes any signature that does not validate, any
signature that is superseded by a later signature, revoked signa-
tures, and signatures issued by keys that are not present on the
keyring.

minimize Make the key as small as possible. This removes all signatures from
each user ID except for the most recent self-signature.

change-usage
Change the usage flags (capabilities) of the primary key or of sub-
keys. These usage flags (e.g. Certify, Sign, Authenticate, Encrypt)
are set during key creation. Sometimes it is useful to have the
opportunity to change them (for example to add Authenticate) af-
ter they have been created. Please take care when doing this; the
allowed usage flags depend on the key algorithm.

cross-certify
Add cross-certification signatures to signing subkeys that
may not currently have them. Cross-certification signatures
protect against a subtle attack against signing subkeys. See
‘--require-cross-certification’. All new keys generated have
this signature by default, so this command is only useful to bring
older keys up to date.

save Save all changes to the keyring and quit.

quit Quit the program without updating the keyring.

The listing shows you the key with its secondary keys and all user IDs. The
primary user ID is indicated by a dot, and selected keys or user IDs are indicated

54 Using the GNU Privacy Guard

by an asterisk. The trust value is displayed with the primary key: "trust" is
the assigned owner trust and "validity" is the calculated validity of the key.
Validity values are also displayed for all user IDs. For possible values of trust,
see [trust-values], page 143.

--sign-key name

Signs a public key with your secret key. This is a shortcut version of the
subcommand "sign" from ‘--edit-key’.

--lsign-key name

Signs a public key with your secret key but marks it as non-exportable. This
is a shortcut version of the subcommand "lsign" from ‘--edit-key’.

--quick-sign-key fpr [names]

--quick-lsign-key fpr [names]

Directly sign a key from the passphrase without any further user interaction.
The fpr must be the verified primary fingerprint of a key in the local keyring.
If no names are given, all useful user ids are signed; with given [names] only
useful user ids matching one of these names are signed. By default, or if a name
is prefixed with a ’*’, a case insensitive substring match is used. If a name is
prefixed with a ’=’ a case sensitive exact match is done.

The command ‘--quick-lsign-key’ marks the signatures as non-exportable.
If such a non-exportable signature already exists the ‘--quick-sign-key’
turns it into a exportable signature. If you need to update an existing
signature, for example to add or change notation data, you need to use the
option ‘--force-sign-key’.

This command uses reasonable defaults and thus does not provide the full
flexibility of the "sign" subcommand from ‘--edit-key’. Its intended use is to
help unattended key signing by utilizing a list of verified fingerprints.

--quick-add-uid user-id new-user-id

This command adds a new user id to an existing key. In contrast to the interac-
tive sub-command adduid of ‘--edit-key’ the new-user-id is added verbatim
with only leading and trailing white space removed, it is expected to be UTF-8
encoded, and no checks on its form are applied.

--quick-revoke-uid user-id user-id-to-revoke

This command revokes a user ID on an existing key. It cannot be used to
revoke the last user ID on key (some non-revoked user ID must remain), with
revocation reason “User ID is no longer valid”. If you want to specify a different
revocation reason, or to supply supplementary revocation text, you should use
the interactive sub-command revuid of ‘--edit-key’.

--quick-revoke-sig fpr signing-fpr [names]

This command revokes the key signatures made by signing-fpr from the
key specified by the fingerprint fpr. With names given only the signatures
on user ids of the key matching any of the given names are affected (see
‘--quick-sign-key’). If a revocation already exists a notice is printed instead
of creating a new revocation; no error is returned in this case. Note that key

Chapter 4: Invoking GPG 55

signature revocations may be superseded by a newer key signature and in turn
again revoked.

--quick-set-primary-uid user-id primary-user-id

This command sets or updates the primary user ID flag on an existing key.
user-id specifies the key and primary-user-id the user ID which shall be flagged
as the primary user ID. The primary user ID flag is removed from all other user
ids and the timestamp of all affected self-signatures is set one second ahead.

--quick-update-pref user-id

This command updates the preference list of the key to the current default
value (either built-in or set via ‘--default-preference-list’). This is the
unattended version of using "setpref" in the ‘--key-edit’ menu without giv-
ing a list. Note that you can show the preferences in a key listing by using
‘--list-options show-pref’ or ‘--list-options show-pref-verbose’. You
should also re-distribute updated keys to your peers.

--quick-set-ownertrust user-id value

This command sets the ownertrust of a key and can also be used to set the
disable flag of a key. This is the unattended version of using "trust", "disable",
or "enable" in the ‘--key-edit’ menu.

--change-passphrase user-id

--passwd user-id

Change the passphrase of the secret key belonging to the certificate specified
as user-id. This is a shortcut for the sub-command passwd of the ‘--edit-key’
menu. When using together with the option ‘--dry-run’ this will not actually
change the passphrase but check that the current passphrase is correct.

4.2 Option Summary

gpg features a bunch of options to control the exact behaviour and to change the default
configuration.

Long options can be put in an options file (default "~/.gnupg/gpg.conf"). Short option
names will not work - for example, "armor" is a valid option for the options file, while "a"
is not. Do not write the 2 dashes, but simply the name of the option and any required
arguments. Lines with a hash (’#’) as the first non-white-space character are ignored.
Commands may be put in this file too, but that is not generally useful as the command will
execute automatically with every execution of gpg.

Please remember that option parsing stops as soon as a non-option is encountered, you
can explicitly stop parsing by using the special option ‘--’.

4.2.1 How to change the configuration

These options are used to change the configuration and most of them are usually found in
the option file.

--default-key name

Use name as the default key to sign with. It is suggested to use a fingerprint
or at least a long keyID for name. If this option is not used, the default key

56 Using the GNU Privacy Guard

is the first key found in the secret keyring. Note that ‘-u’ or ‘--local-user’
overrides this option. This option may be given multiple times. In this case,
the last key for which a secret key is available is used. If there is no secret key
available for any of the specified values, GnuPG will not emit an error message
but continue as if this option wasn’t given.

--default-recipient name

Use name as default recipient if option ‘--recipient’ is not used and don’t
ask if this is a valid one. name must be non-empty and it is suggested to use a
fingerprint for name.

--default-recipient-self

Use the default key as default recipient if option ‘--recipient’ is not used and
don’t ask if this is a valid one. The default key is the first one from the secret
keyring or the one set with ‘--default-key’.

--no-default-recipient

Reset ‘--default-recipient’ and ‘--default-recipient-self’. Should not
be used in an option file.

-v, --verbose

Give more information during processing. If used twice, the input data is listed
in detail.

--no-verbose

Reset verbose level to 0. Should not be used in an option file.

-q, --quiet

Try to be as quiet as possible. Should not be used in an option file.

--batch

--no-batch

Use batch mode. Never ask, do not allow interactive commands. ‘--no-batch’
disables this option. Note that even with a filename given on the command
line, gpg might still need to read from STDIN (in particular if gpg figures that
the input is a detached signature and no data file has been specified). Thus
if you do not want to feed data via STDIN, you should connect STDIN to
‘/dev/null’.

It is highly recommended to use this option along with the options
‘--status-fd’ and ‘--with-colons’ for any unattended use of gpg. Should
not be used in an option file.

--no-tty Make sure that the TTY (terminal) is never used for any output. This option
is needed in some cases because GnuPG sometimes prints warnings to the TTY
even if ‘--batch’ is used.

--yes Assume "yes" on most questions. Should not be used in an option file.

--no Assume "no" on most questions. Should not be used in an option file.

--proc-all-sigs

This option overrides the behaviour of the ‘--batch’ option to stop signature
verification at the first bad signatures.

Chapter 4: Invoking GPG 57

--list-filter {select=expr}

A list filter can be used to output only certain keys during key listing commands.
For the available property names, see the description of ‘--import-filter’.

--list-options parameters

This is a space or comma delimited string that gives options used when
listing keys and signatures (that is, ‘--list-keys’, ‘--check-signatures’,
‘--list-public-keys’, ‘--list-secret-keys’, and the ‘--edit-key’
functions). Options can be prepended with a ‘no-’ (after the two dashes) to
give the opposite meaning. The options are:

show-photos
Causes ‘--list-keys’, ‘--check-signatures’, ‘--list-public-keys’,
and ‘--list-secret-keys’ to display any photo IDs attached
to the key. Defaults to no. See also ‘--photo-viewer’. Does
not work with ‘--with-colons’: see ‘--attribute-fd’ for the
appropriate way to get photo data for scripts and other frontends.

show-usage
Show usage information for keys and subkeys in the standard key
listing. This is a list of letters indicating the allowed usage for a
key (E=encryption, S=signing, C=certification, A=authentication).
Defaults to yes.

show-ownertrust
Show the ownertrust value for keys also in the standard key listing.
Defaults to no.

show-policy-urls
Show policy URLs in the ‘--check-signatures’ listings. Defaults
to no.

show-notations
show-std-notations
show-user-notations

Show all, IETF standard, or user-defined signature notations in the
‘--check-signatures’ listings. Defaults to no.

show-keyserver-urls
Show any preferred keyserver URL in the ‘--check-signatures’
listings. Defaults to no.

show-uid-validity
Display the calculated validity of user IDs during key listings. De-
faults to yes.

show-unusable-uids
Show revoked and expired user IDs in key listings. Defaults to no.

show-unusable-subkeys
Show revoked and expired subkeys in key listings. Defaults to no.

show-unusable-sigs
Show key signature made using weak or unsupported algorithms.

58 Using the GNU Privacy Guard

show-keyring
Display the keyring name at the head of key listings to show which
keyring a given key resides on. Defaults to no.

show-sig-expire
Show signature expiration dates (if any) during
‘--check-signatures’ listings. Defaults to no.

show-sig-subpackets
Include signature subpackets in the key listing. This option can
take an optional argument list of the subpackets to list. If no ar-
gument is passed, list all subpackets. Defaults to no. This op-
tion is only meaningful when using ‘--with-colons’ along with
‘--check-signatures’.

show-only-fpr-mbox
For each user-id which has a valid mail address print only the fin-
gerprint followed by the mail address.

sort-sigs With ‘--list-sigs’ and ‘--check-sigs’ sort the signatures by
keyID and creation time to make it easier to view the history of
these signatures. The self-signature is also listed before other signa-
tures. Defaults to yes. This option has no effect in ‘-with-colons’
mode.

--verify-options parameters

This is a space or comma delimited string that gives options used when verifying
signatures. Options can be prepended with a ‘no-’ to give the opposite meaning.
The options are:

show-photos
Display any photo IDs present on the key that issued the signature.
Defaults to no. See also ‘--photo-viewer’.

show-policy-urls
Show policy URLs in the signature being verified. Defaults to yes.

show-notations
show-std-notations
show-user-notations

Show all, IETF standard, or user-defined signature notations in the
signature being verified. Defaults to IETF standard.

show-keyserver-urls
Show any preferred keyserver URL in the signature being verified.
Defaults to yes.

show-uid-validity
Display the calculated validity of the user IDs on the key that issued
the signature. Defaults to yes.

show-unusable-uids
Show revoked and expired user IDs during signature verification.
Defaults to no.

Chapter 4: Invoking GPG 59

show-primary-uid-only
Show only the primary user ID during signature verification. That
is all the AKA lines as well as photo Ids are not shown with the
signature verification status.

--enable-large-rsa

--disable-large-rsa

With –generate-key and –batch, enable the creation of RSA secret keys as large
as 8192 bit. Note: 8192 bit is more than is generally recommended. These large
keys don’t significantly improve security, but they are more expensive to use,
and their signatures and certifications are larger. This option is only available
if the binary was build with large-secmem support.

--enable-dsa2

--disable-dsa2

Enable hash truncation for all DSA keys even for old DSA Keys up to 1024 bit.
This is also the default with ‘--openpgp’. Note that older versions of GnuPG
also required this flag to allow the generation of DSA larger than 1024 bit.

--photo-viewer string

This is the command line that should be run to view a photo ID. "%i" will
be expanded to a filename containing the photo. "%I" does the same, except
the file will not be deleted once the viewer exits. Other flags are "%k" for
the key ID, "%K" for the long key ID, "%f" for the key fingerprint, "%t" for
the extension of the image type (e.g. "jpg"), "%T" for the MIME type of the
image (e.g. "image/jpeg"), "%v" for the single-character calculated validity of
the image being viewed (e.g. "f"), "%V" for the calculated validity as a string
(e.g. "full"), "%U" for a base32 encoded hash of the user ID, and "%%" for
an actual percent sign. If neither %i or %I are present, then the photo will be
supplied to the viewer on standard input.

On Unix the default viewer is xloadimage -fork -quiet -title ’KeyID 0x%k’

STDIN with a fallback to display -title ’KeyID 0x%k’ %i and finally to xdg-

open %i. On Windows !ShellExecute 400 %i is used; here the command is
a meta command to use that API call followed by a wait time in milliseconds
which is used to give the viewer time to read the temporary image file before
gpg deletes it again. Note that if your image viewer program is not secure, then
executing it from gpg does not make it secure.

--exec-path string

Sets a list of directories to search for photo viewers If not provided photo viewers
use the PATH environment variable.

--keyring file

Add file to the current list of keyrings. If file begins with a tilde and a slash,
these are replaced by the $HOME directory. If the filename does not contain
a slash, it is assumed to be in the GnuPG home directory ("~/.gnupg" unless
‘--homedir’ or $GNUPGHOME is used).

Note that this adds a keyring to the current list. If the intent is to use the
specified keyring alone, use ‘--keyring’ along with ‘--no-default-keyring’.

60 Using the GNU Privacy Guard

If the option ‘--no-keyring’ has been used no keyrings will be used at all.

Note that if the option ‘use-keyboxd’ is enabled in ‘common.conf’, no keyrings
are used at all and keys are all maintained by the keyboxd process in its own
database.

--primary-keyring file

This is a varian of ‘--keyring’ and designates file as the primary public
keyring. This means that newly imported keys (via ‘--import’ or keyserver
‘--recv-from’) will go to this keyring.

--secret-keyring file

This is an obsolete option and ignored. All secret keys are stored in the
‘private-keys-v1.d’ directory below the GnuPG home directory.

--trustdb-name file

Use file instead of the default trustdb. If file begins with a tilde and a slash,
these are replaced by the $HOME directory. If the filename does not con-
tain a slash, it is assumed to be in the GnuPG home directory (‘~/.gnupg’ if
‘--homedir’ or $GNUPGHOME is not used).

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

--display-charset name

Set the name of the native character set. This is used to convert some informa-
tional strings like user IDs to the proper UTF-8 encoding. Note that this has
nothing to do with the character set of data to be encrypted or signed; GnuPG
does not recode user-supplied data. If this option is not used, the default char-
acter set is determined from the current locale. A verbosity level of 3 shows
the chosen set. This option should not be used on Windows. Valid values for
name are:

iso-8859-1 This is the Latin 1 set.

iso-8859-2 The Latin 2 set.

iso-8859-15
This is currently an alias for the Latin 1 set.

koi8-r The usual Russian set (RFC-1489).

utf-8 Bypass all translations and assume that the OS uses native UTF-8
encoding.

Chapter 4: Invoking GPG 61

--utf8-strings

--no-utf8-strings

Assume that command line arguments are given as UTF-8 strings. The default
(‘--no-utf8-strings’) is to assume that arguments are encoded in the charac-
ter set as specified by ‘--display-charset’. These options affect all following
arguments. Both options may be used multiple times. This option should not
be used in an option file.

This option has no effect on Windows. There the internal used UTF-8 encoding
is translated for console input and output. The command line arguments are
expected as Unicode and translated to UTF-8. Thus when calling this program
from another, make sure to use the Unicode version of CreateProcess.

--options file

Read options from file and do not try to read them from the default options file
in the homedir (see ‘--homedir’). This option is ignored if used in an options
file.

--no-options

Shortcut for ‘--options /dev/null’. This option is detected before an attempt
to open an option file. Using this option will also prevent the creation of a
‘~/.gnupg’ homedir.

-z n

--compress-level n

--bzip2-compress-level n

--no-compress

Set compression level to n for the ZIP and ZLIB compression algorithms.
The default is to use the default compression level of zlib (normally 6).
‘--bzip2-compress-level’ sets the compression level for the BZIP2
compression algorithm (defaulting to 6 as well). This is a different option from
‘--compress-level’ since BZIP2 uses a significant amount of memory for
each additional compression level.

Option ‘-z’ sets both. A value of 0 for n disables compression. A value of -1
forces compression using the default level. Option ‘--no-compress’ is identical
to ‘-z0’.

Except for the ‘--store’ command compression is always used unless gpg de-
tects that the input is already compressed. To inhibit the use of compression
use ‘-z0’ or ‘--no-compress’; to force compression use ‘-z-1’ or option ‘z’ with
another compression level than the default as indicated by -1. Note that this
overriding of the default deection works only with ‘z’ and not with the long
variant of this option.

--bzip2-decompress-lowmem

Use a different decompression method for BZIP2 compressed files. This alter-
nate method uses a bit more than half the memory, but also runs at half the
speed. This is useful under extreme low memory circumstances when the file
was originally compressed at a high ‘--bzip2-compress-level’.

62 Using the GNU Privacy Guard

--mangle-dos-filenames

--no-mangle-dos-filenames

Older version of Windows cannot handle filenames with more than one dot.
‘--mangle-dos-filenames’ causes GnuPG to replace (rather than add to) the
extension of an output filename to avoid this problem. This option is off by
default and has no effect on non-Windows platforms.

--ask-cert-level

--no-ask-cert-level

When making a key signature, prompt for a certification level. If this option
is not specified, the certification level used is set via ‘--default-cert-level’.
See ‘--default-cert-level’ for information on the specific levels and how they
are used. ‘--no-ask-cert-level’ disables this option. This option defaults to
no.

--default-cert-level n

The default to use for the check level when signing a key.

0 means you make no particular claim as to how carefully you verified the key.

1 means you believe the key is owned by the person who claims to own it but
you could not, or did not verify the key at all. This is useful for a "persona"
verification, where you sign the key of a pseudonymous user.

2 means you did casual verification of the key. For example, this could mean
that you verified the key fingerprint and checked the user ID on the key against
a photo ID.

3 means you did extensive verification of the key. For example, this could mean
that you verified the key fingerprint with the owner of the key in person, and
that you checked, by means of a hard to forge document with a photo ID (such
as a passport) that the name of the key owner matches the name in the user ID
on the key, and finally that you verified (by exchange of email) that the email
address on the key belongs to the key owner.

Note that the examples given above for levels 2 and 3 are just that: examples.
In the end, it is up to you to decide just what "casual" and "extensive" mean
to you.

This option defaults to 0 (no particular claim).

--min-cert-level

When building the trust database, treat any signatures with a certification level
below this as invalid. Defaults to 2, which disregards level 1 signatures. Note
that level 0 "no particular claim" signatures are always accepted.

--trusted-key long key ID or fingerprint

Assume that the specified key (which should be given as fingerprint) is as trust-
worthy as one of your own secret keys. This option is useful if you don’t want
to keep your secret keys (or one of them) online but still want to be able to
check the validity of a given recipient’s or signator’s key. If the given key is
not locally available but an LDAP keyserver is configured the missing key is
imported from that server. The value "none" is explicitly allowed to distinguish

Chapter 4: Invoking GPG 63

between the use of any trusted-key option and no use of this option at all (e.g.
due to the ‘--no-options’ option).

--add-desig-revoker [sensitive:]fingerprint

Add the key specified by fingerprint as a designated revoker to newly created
keys. If the fingerprint is prefixed with the keyword “sensitive:” that info is
normally not exported with the key. This option may be given several times to
add more than one designated revoker. If the keyword “clear” is used instead
of a fingerprint, all previously fiven fingerprints are discarded. Designated re-
vokers are marked on the key as non-revocable. Note that a designated revoker
specified using a parameter file will also be added to the key.

--default-new-key-adsk fingerprint

Add the subkey specified by fingerprint as an Additional Decryption Subkey
(ADSK) to newly created keys. This option may be given several time to add
more than one ADSK. It is also possible to give several fingerprints delimited by
space or comma as value to this option. If the keyword “clear” is used instead
of a fingerprint, all previously specified fingerprints are discarded (useful to
override options given in a config file). The fingerprint is expected to specify a
subkey and it does not need an exclamation mark as suffix; it must be given in
cmpact format (40 or 64 hex-digits without any spaces).

--trust-model {pgp|classic|tofu|tofu+pgp|direct|always|auto}

Set what trust model GnuPG should follow. The models are:

pgp This is the Web of Trust combined with trust signatures as used in
PGP 5.x and later. This is the default trust model when creating
a new trust database.

classic This is the standard Web of Trust as introduced by PGP 2.

tofu TOFU stands for Trust On First Use. In this experimental trust
model, the first time a key is seen, it is memorized. If later another
key with a user id with the same email address is seen, both keys
are marked as suspect. In that case, the next time either is used,
a warning is displayed describing the conflict, why it might have
occurred (either the user generated a new key and failed to cross
sign the old and new keys, the key is forgery, or a man-in-the-middle
attack is being attempted), and the user is prompted to manually
confirm the validity of the key in question.

Because a potential attacker is able to control the email address
and thereby circumvent the conflict detection algorithm by using
an email address that is similar in appearance to a trusted email
address, whenever a message is verified, statistics about the number
of messages signed with the key are shown. In this way, a user can
easily identify attacks using fake keys for regular correspondents.

When compared with the Web of Trust, TOFU offers significantly
weaker security guarantees. In particular, TOFU only helps en-
sure consistency (that is, that the binding between a key and email
address doesn’t change). A major advantage of TOFU is that it

64 Using the GNU Privacy Guard

requires little maintenance to use correctly. To use the web of trust
properly, you need to actively sign keys and mark users as trusted
introducers. This is a time-consuming process and anecdotal ev-
idence suggests that even security-conscious users rarely take the
time to do this thoroughly and instead rely on an ad-hoc TOFU
process.

In the TOFU model, policies are associated with bindings between
keys and email addresses (which are extracted from user ids and
normalized). There are five policies, which can be set manually
using the ‘--tofu-policy’ option. The default policy can be set
using the ‘--tofu-default-policy’ option.

The TOFU policies are: auto, good, unknown, bad and ask.
The auto policy is used by default (unless overridden by
‘--tofu-default-policy’) and marks a binding as marginally
trusted. The good, unknown and bad policies mark a binding as
fully trusted, as having unknown trust or as having trust never,
respectively. The unknown policy is useful for just using TOFU to
detect conflicts, but to never assign positive trust to a binding.
The final policy, ask prompts the user to indicate the binding’s
trust. If batch mode is enabled (or input is inappropriate in the
context), then the user is not prompted and the undefined trust
level is returned.

tofu+pgp This experimental trust model combines TOFU with the Web of
Trust. This is done by computing the trust level for each model
and then taking the maximum trust level where the trust levels
are ordered as follows: unknown < undefined < marginal < fully

< ultimate < expired < never.

By setting ‘--tofu-default-policy=unknown’, this model can be
used to implement the web of trust with TOFU’s conflict detec-
tion algorithm, but without its assignment of positive trust values,
which some security-conscious users don’t like.

direct Key validity is set directly by the user and not calculated via the
Web of Trust. This model is solely based on the key and does not
distinguish user IDs. Note that when changing to another trust
model the trust values assigned to a key are transformed into own-
ertrust values, which also indicate how you trust the owner of the
key to sign other keys.

always Skip key validation and assume that used keys are always fully valid.
You generally won’t use this unless you are using some external
validation scheme. This option also suppresses the "[uncertain]"
tag printed with signature checks when there is no evidence that
the user ID is bound to the key. Note that this trust model still
does not allow the use of expired, revoked, or disabled keys.

auto Select the trust model depending on whatever the internal trust
database says. This is the default model if such a database already

Chapter 4: Invoking GPG 65

exists. Note that a tofu trust model is not considered here and
must be enabled explicitly.

--always-trust

Identical to ‘--trust-model always’.

--assert-signer fpr_or_file

This option checks whether at least one valid signature on a file has been made
with the specified key. The key is either specified as a fingerprint or a file
listing fingerprints. The fingerprint must be given or listed in compact format
(no colons or spaces in between). This option can be given multiple times and
each fingerprint is checked against the signing key as well as the corresponding
primary key. If fpr or file specifies a file, empty lines are ignored as well as all
lines starting with a hash sign. With this option gpg is guaranteed to return
with an exit code of 0 if and only if a signature has been encountered, is valid,
and the key matches one of the fingerprints given by this option.

--assert-pubkey-algo algolist

During data signature verification this options checks whether the used public
key algorithm matches the algorithms given by algolist. This option can be
given multiple times to concatenate more algorithms to the list; the delimiter
of the list are either commas or spaces.

The algorithm names given in the list may either be verbatim names like
"ed25519" with an optional leading single equal sign, or being prefixed with ">",
">=", "<=", or "<". That prefix operator is applied to the number part of the
algorithm name; for example 2048 in "rsa2048" or 384 in "brainpoolP384r1".
If the the leading non-digits in the name matches, the prefix operator is used to
compare the number part, a trailing suffix is ignored in this case. For example
an algorithm list ">rsa3000, >=brainpool384r1, =ed25519" allows RSA signa-
tures with more that 3000 bits, Brainpool curves 384 and 512, and the ed25519
algorithm.

With this option gpg (and also gpgv) is guaranteed to return with an exit
code of 0 if and only if all valid signatures on data are made using a matching
algorithm from the given list.

--auto-key-locate mechanisms

--no-auto-key-locate

GnuPG can automatically locate and retrieve keys as needed using this option.
This happens when encrypting to an email address (in the "user@example.com"

form), and there are no "user@example.com" keys on the local keyring. This
option takes any number of the mechanisms listed below, in the order they are
to be tried. Instead of listing the mechanisms as comma delimited arguments,
the option may also be given several times to add more mechanism. The option
‘--no-auto-key-locate’ or the mechanism "clear" resets the list. The default
is "local,wkd".

cert Locate a key using DNS CERT, as specified in RFC-4398.

dane Locate a key using DANE, as specified in draft-ietf-dane-
openpgpkey-05.txt.

66 Using the GNU Privacy Guard

wkd Locate a key using the Web Key Directory protocol.

ldap Locate the key using the configured LDAP servers. This method is
similar to the keyserver mechanism but always uses only LDAP
servers.

ntds Locate the key using the Active Directory (Windows only). This
method also allows one to search by fingerprint using the command
‘--locate-external-key’. Note that this mechanism is actually
a shortcut for the mechanism ‘ldap’ using only "ldap:///" as the
keyserver.

keyserver Locate a key using a keyserver. This method also al-
lows one to search by fingerprint using the command
‘--locate-external-key’ if any of the configured keyservers is
an LDAP server.

keyserver-URL
In addition, a keyserver URL as used in the dirmngr configura-
tion may be used here to query that particular keyserver. This
method also allows one to search by fingerprint using the command
‘--locate-external-key’ if the URL specifies an LDAP server.

local Locate the key using the local keyrings. This mechanism
allows the user to select the order a local key lookup is
done. Thus using ‘--auto-key-locate local’ is identical to
‘--no-auto-key-locate’.

nodefault This flag disables the standard local key lookup, done before any
of the mechanisms defined by the ‘--auto-key-locate’ are tried.
The position of this mechanism in the list does not matter. It is
not required if local is also used.

clear Clear all defined mechanisms. This is useful to override mechanisms
given in a config file. Note that a nodefault in mechanisms will
also be cleared unless it is given after the clear.

--auto-key-import

--no-auto-key-import

This is an offline mechanism to get a missing key for signature verification and
for later encryption to this key. If this option is enabled and a signature includes
an embedded key, that key is used to verify the signature and on verification
success the key is imported. The default is ‘--no-auto-key-import’.

On the sender (signing) site the option ‘--include-key-block’ needs to be
used to put the public part of the signing key as Key Block subpacket into the
signature.

--auto-key-retrieve

--no-auto-key-retrieve

These options enable or disable the automatic retrieving of keys from a keyserver
when verifying signatures made by keys that are not on the local keyring. The
default is ‘--no-auto-key-retrieve’.

Chapter 4: Invoking GPG 67

The order of methods tried to lookup the key is:

1. If the option ‘--auto-key-import’ is set and the signatures includes an
embedded key, that key is used to verify the signature and on verification success
that key is imported.

2. If a preferred keyserver is specified in the signature and the option
‘honor-keyserver-url’ is active (which is not the default), that key-
server is tried. Note that the creator of the signature uses the option
‘--sig-keyserver-url’ to specify the preferred keyserver for data signatures.

3. If the signature has the Signer’s UID set (e.g. using ‘--sender’ while creating
the signature) a Web Key Directory (WKD) lookup is done. This is the default
configuration but can be disabled by removing WKD from the auto-key-locate
list or by using the option ‘--disable-signer-uid’.

4. If any keyserver is configured and the Issuer Fingerprint is part of the
signature (since GnuPG 2.1.16), the configured keyservers are tried.

Note that this option makes a "web bug" like behavior possible. Keyserver or
Web Key Directory operators can see which keys you request, so by sending
you a message signed by a brand new key (which you naturally will not have
on your local keyring), the operator can tell both your IP address and the time
when you verified the signature.

--keyid-format {none|short|0xshort|long|0xlong}

Select how to display key IDs. "none" does not show the key ID at all but
shows the fingerprint in a separate line. "short" is the traditional 8-character
key ID. "long" is the more accurate (but less convenient) 16-character key ID.
Add an "0x" to either to include an "0x" at the beginning of the key ID, as in
0x99242560. Note that this option is ignored if the option ‘--with-colons’ is
used.

--keyserver name

This option is deprecated - please use the ‘--keyserver’ in ‘dirmngr.conf’
instead.

Use name as your keyserver. This is the server that ‘--receive-keys’,
‘--send-keys’, and ‘--search-keys’ will communicate with to receive keys
from, send keys to, and search for keys on. The format of the name is a
URI: ‘scheme:[//]keyservername[:port]’ The scheme is the type of keyserver:
"hkp"/"hkps" for the HTTP (or compatible) keyservers or "ldap"/"ldaps"
for the LDAP keyservers. Note that your particular installation of GnuPG
may have other keyserver types available as well. Keyserver schemes are
case-insensitive.

Most keyservers synchronize with each other, so there is generally no need to
send keys to more than one server. The keyserver hkp://keys.gnupg.net uses
round robin DNS to give a different keyserver each time you use it.

--keyserver-options {name=value}

This is a space or comma delimited string that gives options for the keyserver.
Options can be prefixed with a ‘no-’ to give the opposite meaning. Valid
import-options or export-options may be used here as well to apply to import-

68 Using the GNU Privacy Guard

ing (‘--recv-key’) or exporting (‘--send-key’) a key from a keyserver. While
not all options are available for all keyserver types, some common options are:

include-revoked
When searching for a key with ‘--search-keys’, include keys that
are marked on the keyserver as revoked. Note that not all key-
servers differentiate between revoked and unrevoked keys, and for
such keyservers this option is meaningless. Note also that most key-
servers do not have cryptographic verification of key revocations,
and so turning this option off may result in skipping keys that are
incorrectly marked as revoked.

include-disabled
When searching for a key with ‘--search-keys’, include keys that
are marked on the keyserver as disabled. Note that this option is
not used with HKP keyservers.

auto-key-retrieve
This is an obsolete alias for the option ‘auto-key-retrieve’.
Please do not use it; it will be removed in future versions..

honor-keyserver-url
When using ‘--refresh-keys’, if the key in question has a pre-
ferred keyserver URL, then use that preferred keyserver to refresh
the key from. In addition, if auto-key-retrieve is set, and the sig-
nature being verified has a preferred keyserver URL, then use that
preferred keyserver to fetch the key from. Note that this option
introduces a "web bug": The creator of the key can see when the
keys is refreshed. Thus this option is not enabled by default.

include-subkeys
When receiving a key, include subkeys as potential targets. Note
that this option is not used with HKP keyservers, as they do not
support retrieving keys by subkey id.

only-pubkeys
Do now allow to import secret keys.

timeout
http-proxy=value
verbose
debug
check-cert

ca-cert-file These options have no more function since GnuPG 2.1. Use the
dirmngr configuration options instead.

The default list of options is: "self-sigs-only, import-clean, repair-keys, repair-
pks-subkey-bug, export-attributes". However, if the actual used source is an
LDAP server "no-self-sigs-only" is assumed unless "self-sigs-only" has been
explicitly configured.

Chapter 4: Invoking GPG 69

--completes-needed n

Number of completely trusted users to introduce a new key signer (defaults to
1).

--marginals-needed n

Number of marginally trusted users to introduce a new key signer (defaults to
3)

--tofu-default-policy {auto|good|unknown|bad|ask}

The default TOFU policy (defaults to auto). For more information about the
meaning of this option, see [trust-model-tofu], page 63.

--max-cert-depth n

Maximum depth of a certification chain (default is 5).

--no-sig-cache

Do not cache the verification status of key signatures. Caching gives a much
better performance in key listings. However, if you suspect that your public
keyring is not safe against write modifications, you can use this option to disable
the caching. It probably does not make sense to disable it because all kind of
damage can be done if someone else has write access to your public keyring.

--auto-check-trustdb

--no-auto-check-trustdb

If GnuPG feels that its information about the Web of Trust has to be updated,
it automatically runs the ‘--check-trustdb’ command internally. This may be
a time consuming process. ‘--no-auto-check-trustdb’ disables this option.

--use-agent

--no-use-agent

This is dummy option. gpg always requires the agent.

--gpg-agent-info

This is dummy option. It has no effect when used with gpg.

--agent-program file

Specify an agent program to be used for secret key operations. The default
value is determined by running gpgconf with the option ‘--list-dirs’. Note
that the pipe symbol (|) is used for a regression test suite hack and may thus
not be used in the file name.

--dirmngr-program file

Specify a dirmngr program to be used for keyserver access. The default value
is ‘/usr/local/bin/dirmngr’.

--disable-dirmngr

Entirely disable the use of the Dirmngr.

--no-autostart

Do not start the gpg-agent or the dirmngr if it has not yet been started and
its service is required. This option is mostly useful on machines where the
connection to gpg-agent has been redirected to another machines. If dirmngr
is required on the remote machine, it may be started manually using gpgconf

--launch dirmngr.

70 Using the GNU Privacy Guard

--lock-once

Lock the databases the first time a lock is requested and do not release the lock
until the process terminates.

--lock-multiple

Release the locks every time a lock is no longer needed. Use this to override a
previous ‘--lock-once’ from a config file.

--lock-never

Disable locking entirely. This option should be used only in very special envi-
ronments, where it can be assured that only one process is accessing those files.
A bootable floppy with a stand-alone encryption system will probably use this.
Improper usage of this option may lead to data and key corruption.

--exit-on-status-write-error

This option will cause write errors on the status FD to immediately terminate
the process. That should in fact be the default but it never worked this way
and thus we need an option to enable this, so that the change won’t break
applications which close their end of a status fd connected pipe too early. Using
this option along with ‘--enable-progress-filter’ may be used to cleanly
cancel long running gpg operations.

--limit-card-insert-tries n

With n greater than 0 the number of prompts asking to insert a smartcard gets
limited to N-1. Thus with a value of 1 gpg won’t at all ask to insert a card if
none has been inserted at startup. This option is useful in the configuration file
in case an application does not know about the smartcard support and waits
ad infinitum for an inserted card.

--no-random-seed-file

GnuPG uses a file to store its internal random pool over invocations. This
makes random generation faster; however sometimes write operations are not
desired. This option can be used to achieve that with the cost of slower random
generation.

--no-greeting

Suppress the initial copyright message.

--no-secmem-warning

Suppress the warning about "using insecure memory".

--no-permission-warning

Suppress the warning about unsafe file and home directory (‘--homedir’) per-
missions. Note that the permission checks that GnuPG performs are not in-
tended to be authoritative, but rather they simply warn about certain common
permission problems. Do not assume that the lack of a warning means that
your system is secure.

Note that the warning for unsafe ‘--homedir’ permissions cannot be suppressed
in the gpg.conf file, as this would allow an attacker to place an unsafe gpg.conf
file in place, and use this file to suppress warnings about itself. The ‘--homedir’
permissions warning may only be suppressed on the command line.

Chapter 4: Invoking GPG 71

--require-secmem

--no-require-secmem

Refuse to run if GnuPG cannot get secure memory. Defaults to no (i.e. run,
but give a warning).

--require-cross-certification

--no-require-cross-certification

When verifying a signature made from a subkey, ensure that the cross
certification "back signature" on the subkey is present and valid. This
protects against a subtle attack against subkeys that can sign. Defaults to
‘--require-cross-certification’ for gpg.

--expert

--no-expert

Allow the user to do certain nonsensical or "silly" things like signing an expired
or revoked key, or certain potentially incompatible things like generating un-
usual key types. This also disables certain warning messages about potentially
incompatible actions. As the name implies, this option is for experts only. If
you don’t fully understand the implications of what it allows you to do, leave
this off. ‘--no-expert’ disables this option.

4.2.2 Key related options

--recipient name

-r Encrypt for user id name. If this option or ‘--hidden-recipient’ is not spec-
ified, GnuPG asks for the user-id unless ‘--default-recipient’ is given.

--hidden-recipient name

-R Encrypt for user ID name, but hide the key ID of this user’s key. This option
helps to hide the receiver of the message and is a limited countermeasure against
traffic analysis. If this option or ‘--recipient’ is not specified, GnuPG asks
for the user ID unless ‘--default-recipient’ is given.

--recipient-file file

-f This option is similar to ‘--recipient’ except that it encrypts to a key stored
in the given file. file must be the name of a file containing exactly one key. gpg
assumes that the key in this file is fully valid.

--hidden-recipient-file file

-F This option is similar to ‘--hidden-recipient’ except that it encrypts to a
key stored in the given file. file must be the name of a file containing exactly
one key. gpg assumes that the key in this file is fully valid.

--encrypt-to name

Same as ‘--recipient’ but this one is intended for use in the options file and
may be used with your own user-id as an "encrypt-to-self". It is suggested
to use a fingerprint or at least a long keyID for name. These keys are only
used when there are other recipients given either by use of ‘--recipient’ or by
the asked user id. No trust checking is performed for these user ids and even
disabled keys can be used.

72 Using the GNU Privacy Guard

--hidden-encrypt-to name

Same as ‘--hidden-recipient’ but this one is intended for use in the options
file and may be used with your own user-id as a hidden "encrypt-to-self". It is
suggested to use a fingerprint or at least a long keyID for name. These keys are
only used when there are other recipients given either by use of ‘--recipient’
or by the asked user id. No trust checking is performed for these user ids and
even disabled keys can be used.

--no-encrypt-to

Disable the use of all ‘--encrypt-to’ and ‘--hidden-encrypt-to’ keys.

--group {name=value}

Sets up a named group, which is similar to aliases in email programs. Any time
the group name is a recipient (‘-r’ or ‘--recipient’), it will be expanded to
the values specified. Multiple groups with the same name are automatically
merged into a single group.

The values are key IDs or fingerprints, but any key description is accepted.
Note that a value with spaces in it will be treated as two different values.
Note also there is only one level of expansion — you cannot make an group
that points to another group. When used from the command line, it may be
necessary to quote the argument to this option to prevent the shell from treating
it as multiple arguments.

--ungroup name

Remove a given entry from the ‘--group’ list.

--no-groups

Remove all entries from the ‘--group’ list.

--local-user name

-u Use name as the key to sign with. Note that this option overrides
‘--default-key’.

--sender mbox

This option has two purposes. mbox must either be a complete user ID con-
taining a proper mail address or just a plain mail address. The option can be
given multiple times.

When creating a signature this option tells gpg the signing key’s user id used to
make the signature and embeds that user ID into the created signature (using
OpenPGP’s “Signer’s User ID” subpacket). If the option is given multiple times
a suitable user ID is picked. However, if the signing key was specified directly
by using a mail address (i.e. not by using a fingerprint or key ID) this option
is used and the mail address is embedded in the created signature.

When verifying a signature mbox is used to restrict the information printed by
the TOFU code to matching user IDs. If the option is used and the signature
contains a “Signer’s User ID” subpacket that information is is also used to
restrict the printed information. Note that GnuPG considers only the mail
address part of a User ID.

If this option or the said subpacket is available the TRUST lines as printed by
option ‘status-fd’ correspond to the corresponding User ID; if no User ID is

Chapter 4: Invoking GPG 73

known the TRUST lines are computed directly on the key and do not give any
information about the User ID. In the latter case it his highly recommended
to scripts and other frontends to evaluate the VALIDSIG line, retrieve the key
and print all User IDs along with their validity (trust) information.

--try-secret-key name

For hidden recipients GPG needs to know the keys to use for trial decryption.
The key set with ‘--default-key’ is always tried first, but this is often not
sufficient. This option allows setting more keys to be used for trial decryption.
Although any valid user-id specification may be used for name it makes sense
to use at least the long keyid to avoid ambiguities. Note that gpg-agent might
pop up a pinentry for a lot keys to do the trial decryption. If you want to
stop all further trial decryption you may use close-window button instead of
the cancel button.

--try-all-secrets

Don’t look at the key ID as stored in the message but try all secret keys
in turn to find the right decryption key. This option forces the behaviour
as used by anonymous recipients (created by using ‘--throw-keyids’ or
‘--hidden-recipient’) and might come handy in case where an encrypted
message contains a bogus key ID.

--skip-hidden-recipients

--no-skip-hidden-recipients

During decryption skip all anonymous recipients. This option helps in the case
that people use the hidden recipients feature to hide their own encrypt-to key
from others. If one has many secret keys this may lead to a major annoyance
because all keys are tried in turn to decrypt something which was not really
intended for it. The drawback of this option is that it is currently not possible
to decrypt a message which includes real anonymous recipients.

4.2.3 Input and Output

--armor

-a Create ASCII armored output. The default is to create the binary OpenPGP
format.

--no-armor

Assume the input data is not in ASCII armored format.

--output file

-o file Write output to file. To write to stdout use - as the filename.

--max-output n

This option sets a limit on the number of bytes that will be generated when
processing a file. Since OpenPGP supports various levels of compression, it
is possible that the plaintext of a given message may be significantly larger
than the original OpenPGP message. While GnuPG works properly with such
messages, there is often a desire to set a maximum file size that will be generated
before processing is forced to stop by the OS limits. Defaults to 0, which means
"no limit".

74 Using the GNU Privacy Guard

--chunk-size n

The AEAD encryption mode encrypts the data in chunks so that a receiving
side can check for transmission errors or tampering at the end of each chunk
and does not need to delay this until all data has been received. The used chunk
size is 2^n byte. The lowest allowed value for n is 6 (64 byte) and the largest
is the default of 22 which creates chunks not larger than 4 MiB.

--input-size-hint n

This option can be used to tell GPG the size of the input data in bytes. n
must be a positive base-10 number. This option is only useful if the input is
not taken from a file. GPG may use this hint to optimize its buffer allocation
strategy. It is also used by the ‘--status-fd’ line “PROGRESS” to provide a
value for “total” if that is not available by other means.

--key-origin string[,url]

gpg can track the origin of a key. Certain origins are implicitly known (e.g.
keyserver, web key directory) and set. For a standard import the origin of the
keys imported can be set with this option. To list the possible values use "help"
for string. Some origins can store an optional url argument. That URL can
appended to string after a comma.

--import-options parameters

This is a space or comma delimited string that gives options for importing
keys. Options can be prepended with a ‘no-’ to give the opposite meaning. The
options are:

import-local-sigs
Allow importing key signatures marked as "local". This is not gen-
erally useful unless a shared keyring scheme is being used. Defaults
to no.

keep-ownertrust
Normally possible still existing ownertrust values of a key are
cleared if a key is imported. This is in general desirable so that a
formerly deleted key does not automatically gain an ownertrust
values merely due to import. On the other hand it is sometimes
necessary to re-import a trusted set of keys again but keeping
already assigned ownertrust values. This can be achieved by using
this option.

repair-pks-subkey-bug
During import, attempt to repair the damage caused by the PKS
keyserver bug (pre version 0.9.6) that mangles keys with multiple
subkeys. Note that this cannot completely repair the damaged key
as some crucial data is removed by the keyserver, but it does at least
give you back one subkey. Defaults to no for regular ‘--import’ and
to yes for keyserver ‘--receive-keys’.

import-show
show-only Show a listing of the key as imported right before it is stored.

This can be combined with the option ‘--dry-run’ to only look

Chapter 4: Invoking GPG 75

at keys; the option ‘show-only’ is a shortcut for this combination.
The command ‘--show-keys’ is another shortcut for this. Note
that suffixes like ’#’ for "sec" and "sbb" lines may or may not be
printed.

import-export
Run the entire import code but instead of storing the key to the lo-
cal keyring write it to the output. The export option ‘export-dane’
affect the output. This option can for example be used to remove
all invalid parts from a key without the need to store it.

merge-only
During import, allow key updates to existing keys, but do not allow
any new keys to be imported. Defaults to no.

import-clean
After import, compact (remove all signatures except the
self-signature) any user IDs from the new key that are not usable.
Then, remove any signatures from the new key that are not
usable. This includes signatures that were issued by keys that are
not present on the keyring. This option is the same as running the
‘--edit-key’ command "clean" after import. Defaults to no.

self-sigs-only
Accept only self-signatures while importing a key. All other key
signatures are skipped at an early import stage. This option can
be used with keyserver-options to mitigate attempts to flood a
key with bogus signatures from a keyserver. The drawback is that
all other valid key signatures, as required by the Web of Trust are
also not imported. Note that when using this option along with
import-clean it suppresses the final clean step after merging the
imported key into the existing key.

ignore-attributes
Ignore all attribute user IDs (photo IDs) and their signatures while
importing a key.

repair-keys
After import, fix various problems with the keys. For example, this
reorders signatures, and strips duplicate signatures. Defaults to
yes.

bulk-import
When used the keyboxd (option ‘use-keyboxd’ in ‘common.conf’)
does the import within a single transaction.

import-minimal
Import the smallest key possible. This removes all signatures ex-
cept the most recent self-signature on each user ID. This option is
the same as running the ‘--edit-key’ command "minimize" after
import. Defaults to no.

76 Using the GNU Privacy Guard

restore
import-restore

Import in key restore mode. This imports all data which is usually
skipped during import; including all GnuPG specific data. All other
contradicting options are overridden.

--import-filter {name=expr}

--export-filter {name=expr}

These options define an import/export filter which are applied to the im-
ported/exported keyblock right before it will be stored/written. name defines
the type of filter to use, expr the expression to evaluate. The option can be
used several times which then appends more expression to the same name.

The available filter types are:

keep-uid This filter will keep a user id packet and its dependent packets in
the keyblock if the expression evaluates to true.

drop-subkey
This filter drops the selected subkeys. Currently only implemented
for –export-filter.

drop-sig This filter drops the selected key signatures on user ids. Self-
signatures are not considered. Currently only implemented for –
import-filter.

select This filter is only implemented by ‘--list-filter’. All property
names may be used.

For the syntax of the expression see the chapter "FILTER EXPRESSIONS".
The property names for the expressions depend on the actual filter type and
are indicated in the following table. Note that all property names may also be
used by ‘--list-filter’.

Property names may be prefix with a scope delimited by a slash. Valid scopes
are "pub" for public and secret primary keys, "sub" for public and secret sub-
keys, "uid" for for user-ID packets, and "sig" for signature packets. Invalid
scopes are currently ignored.

The available properties are:

uid A string with the user id. (keep-uid)

mbox The addr-spec part of a user id with mailbox or the empty string.
(keep-uid)

algostr A string with the key algorithm description. For example "rsa3072"
or "ed25519".

key algo A number with the public key algorithm of a key or subkey packet.
(drop-subkey)

key size A number with the effective key size of a key or subkey packet.
(drop-subkey)

Chapter 4: Invoking GPG 77

key created
key created d

The first is the timestamp a public key or subkey packet was cre-
ated. The second is the same but given as an ISO string, e.g.
"2016-08-17". (drop-subkey)

key expires
key expires d

The expiration time of a public key or subkey or 0 if it does not
expire. The second is the same but given as an ISO date string or
an empty string e.g. "2038-01-19".

fpr The hexified fingerprint of the current subkey or primary key.
(drop-subkey)

primary Boolean indicating whether the user id is the primary one. (keep-
uid)

expired Boolean indicating whether a user id (keep-uid), a key
(drop-subkey), or a signature (drop-sig) expired.

revoked Boolean indicating whether a user id (keep-uid) or a key (drop-
subkey) has been revoked.

disabled Boolean indicating whether a primary key is disabled.

secret Boolean indicating whether a key or subkey is a secret one. (drop-
subkey)

usage A string indicating the usage flags for the subkey, from the se-
quence “ecsa?”. For example, a subkey capable of just signing and
authentication would be an exact match for “sa”. (drop-subkey)

sig created
sig created d

The first is the timestamp a signature packet was created. The
second is the same but given as an ISO date string, e.g. "2016-08-
17". (drop-sig)

sig expires
sig expires d

The expiration time of a signature packet or 0 if it does not expire.
The second is the same but given as an ISO date string or an empty
string e.g. "2038-01-19".

sig algo A number with the public key algorithm of a signature packet.
(drop-sig)

sig digest algo
A number with the digest algorithm of a signature packet. (drop-
sig)

origin A string with the key origin or a question mark. For example the
string “wkd” is used if a key originated from a Web Key Directory
lookup.

78 Using the GNU Privacy Guard

lastupd The timestamp the key was last updated from a keyserver or the
Web Key Directory.

url A string with the the URL associated wit the last key lookup.

--export-options parameters

This is a space or comma delimited string that gives options for exporting keys.
Options can be prepended with a ‘no-’ to give the opposite meaning. The
options are:

export-local-sigs
Allow exporting key signatures marked as "local". This is not gen-
erally useful unless a shared keyring scheme is being used. Defaults
to no.

export-attributes
Include attribute user IDs (photo IDs) while exporting. Not includ-
ing attribute user IDs is useful to export keys that are going to be
used by an OpenPGP program that does not accept attribute user
IDs. Defaults to yes.

export-sensitive-revkeys
Include designated revoker information that was marked as "sensi-
tive". Defaults to no.

backup
export-backup

Export for use as a backup. The exported data includes all data
which is needed to restore the key or keys later with GnuPG. The
format is basically the OpenPGP format but enhanced with GnuPG
specific data. All other contradicting options are overridden.

export-clean
Compact (remove all signatures from) user IDs on the key being
exported if the user IDs are not usable. Also, do not export any
signatures that are not usable. This includes signatures that were
issued by keys that are not present on the keyring. This option is
the same as running the ‘--edit-key’ command "clean" before ex-
port except that the local copy of the key is not modified. Defaults
to no.

export-minimal
Export the smallest key possible. This removes all signatures ex-
cept the most recent self-signature on each user ID. This option is
the same as running the ‘--edit-key’ command "minimize" be-
fore export except that the local copy of the key is not modified.
Defaults to no.

export-revocs
Export only standalone revocation certificates of the key. This op-
tion does not export revocations of 3rd party certificate revocations.

Chapter 4: Invoking GPG 79

export-dane
Instead of outputting the key material output OpenPGP DANE
records suitable to put into DNS zone files. An ORIGIN line is
printed before each record to allow diverting the records to the
corresponding zone file.

mode1003 Enable the use of a new secret key export format. This format
avoids the re-encryption as required with the current OpenPGP
format and also improves the security of the secret key if it has
been protected with a passphrase. Note that an unprotected key
is exported as-is and thus not secure; the general rule to convey
secret keys in an OpenPGP encrypted file still applies with this
mode. Versions of GnuPG before 2.4.0 are not able to import such
a secret file.

--with-colons

Print key listings delimited by colons. Note that the output will be encoded in
UTF-8 regardless of any ‘--display-charset’ setting. This format is useful
when GnuPG is called from scripts and other programs as it is easily machine
parsed. The details of this format are documented in the file ‘doc/DETAILS’,
which is included in the GnuPG source distribution.

--fixed-list-mode

Do not merge primary user ID and primary key in ‘--with-colon’ listing mode
and print all timestamps as seconds since 1970-01-01. Since GnuPG 2.0.10, this
mode is always used and thus this option is obsolete; it does not harm to use
it though.

--legacy-list-mode

Revert to the pre-2.1 public key list mode. This only affects the human readable
output and not the machine interface (i.e. --with-colons). Note that the
legacy format does not convey suitable information for elliptic curves.

--with-fingerprint

Same as the command ‘--fingerprint’ but changes only the format of the
output and may be used together with another command.

--with-subkey-fingerprint

If a fingerprint is printed for the primary key, this option forces printing of
the fingerprint for all subkeys. This could also be achieved by using the
‘--with-fingerprint’ twice but by using this option along with keyid-format
"none" a compact fingerprint is printed.

--with-v5-fingerprint

In a colon mode listing emit "fp2" lines for version 4 OpenPGP keys having a
v5 style fingerprint of the key.

--with-icao-spelling

Print the ICAO spelling of the fingerprint in addition to the hex digits.

--with-keygrip

Include the keygrip in the key listings. In --with-colonsmode this is implicitly
enable for secret keys.

80 Using the GNU Privacy Guard

--with-key-origin

Include the locally held information on the origin and last update of a key in
a key listing. In --with-colons mode this is always printed. This data is
currently experimental and shall not be considered part of the stable API.

--with-wkd-hash

Print a Web Key Directory identifier along with each user ID in key listings.
This is an experimental feature and semantics may change.

--with-secret

Include info about the presence of a secret key in public key listings done with
--with-colons.

4.2.4 OpenPGP protocol specific options

--force-ocb

--force-aead

Force the use of AEAD encryption over MDC encryption. AEAD is a modern
and faster way to do authenticated encryption than the old MDC method.
‘--force-aead’ is an alias and deprecated. See also option ‘--chunk-size’.

--force-mdc

--disable-mdc

These options are obsolete and have no effect since GnuPG 2.2.8. The MDC
is always used unless the keys indicate that an AEAD algorithm can be used
in which case AEAD is used. But note: If the creation of a legacy non-MDC
message is exceptionally required, the option ‘--rfc2440’ allows for this.

--disable-signer-uid

By default the user ID of the signing key is embedded in the data signature. As
of now this is only done if the signing key has been specified with ‘local-user’
using a mail address, or with ‘sender’. This information can be helpful for
verifier to locate the key; see option ‘--auto-key-retrieve’.

--include-key-block

--no-include-key-block

This option is used to embed the actual signing key into a data signature.
The embedded key is stripped down to a single user id and includes only the
signing subkey used to create the signature as well as as valid encryption
subkeys. All other info is removed from the key to keep it and thus the
signature small. This option is the OpenPGP counterpart to the gpgsm

option ‘--include-certs’ and allows the recipient of a signed message to
reply encrypted to the sender without using any online directories to lookup
the key. The default is ‘--no-include-key-block’. See also the option
‘--auto-key-import’.

--personal-cipher-preferences string

Set the list of personal cipher preferences to string. Use gpg--version to get a
list of available algorithms, and use none to set no preference at all. This allows
the user to safely override the algorithm chosen by the recipient key preferences,
as GPG will only select an algorithm that is usable by all recipients. The most

Chapter 4: Invoking GPG 81

highly ranked cipher in this list is also used for the ‘--symmetric’ encryption
command.

--personal-digest-preferences string

Set the list of personal digest preferences to string. Use gpg--version to get a
list of available algorithms, and use none to set no preference at all. This allows
the user to safely override the algorithm chosen by the recipient key preferences,
as GPG will only select an algorithm that is usable by all recipients. The most
highly ranked digest algorithm in this list is also used when signing without
encryption (e.g. ‘--clear-sign’ or ‘--sign’).

--personal-compress-preferences string

Set the list of personal compression preferences to string. Use gpg--version

to get a list of available algorithms, and use none to set no preference at all.
This allows the user to safely override the algorithm chosen by the recipient key
preferences, as GPG will only select an algorithm that is usable by all recipients.
The most highly ranked compression algorithm in this list is also used when
there are no recipient keys to consider (e.g. ‘--symmetric’).

--s2k-cipher-algo name

Use name as the cipher algorithm for symmetric encryption with a passphrase if
‘--personal-cipher-preferences’ and ‘--cipher-algo’ are not given. The
default is AES-128.

--s2k-digest-algo name

Use name as the digest algorithm used to mangle the passphrases for symmetric
encryption. The default is SHA-1.

--s2k-mode n

Selects how passphrases for symmetric encryption are mangled. If n is 0 a plain
passphrase (which is in general not recommended) will be used, a 1 adds a salt
(which should not be used) to the passphrase and a 3 (the default) iterates the
whole process a number of times (see ‘--s2k-count’).

--s2k-count n

Specify how many times the passphrases mangling for symmetric encryption
is repeated. This value may range between 1024 and 65011712 inclusive. The
default is inquired from gpg-agent. Note that not all values in the 1024-65011712
range are legal and if an illegal value is selected, GnuPG will round up to the
nearest legal value. This option is only meaningful if ‘--s2k-mode’ is set to the
default of 3.

4.2.5 Compliance options

These options control what GnuPG is compliant to. Only one of these options may be
active at a time. Note that the default setting of this is nearly always the correct one. See
the INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS section below before
using one of these options.

--gnupg Use standard GnuPG behavior. This is essentially OpenPGP behavior (see
‘--openpgp’), but with extension from the proposed update to OpenPGP and

82 Using the GNU Privacy Guard

with some additional workarounds for common compatibility problems in dif-
ferent versions of PGP. This is the default option, so it is not generally needed,
but it may be useful to override a different compliance option in the gpg.conf
file.

--openpgp

Reset all packet, cipher and digest options to strict OpenPGP behavior.
This option implies ‘--allow-old-cipher-algos’. Use this option to reset
all previous options like ‘--s2k-*’, ‘--cipher-algo’, ‘--digest-algo’ and
‘--compress-algo’ to OpenPGP compliant values. All PGP workarounds are
disabled.

--rfc4880

Reset all packet, cipher and digest options to strict RFC-4880 behavior. This
option implies ‘--allow-old-cipher-algos’. Note that this is currently the
same thing as ‘--openpgp’.

--rfc4880bis

Reset all packet, cipher and digest options to strict according to the proposed
updates of RFC-4880.

--rfc2440

Reset all packet, cipher and digest options to strict RFC-2440 behavior. Note
that by using this option encryption packets are created in a legacy mode with-
out MDC protection. This is dangerous and should thus only be used for ex-
periments. This option implies ‘--allow-old-cipher-algos’. See also option
‘--ignore-mdc-error’.

--pgp6 This option is obsolete; it is handled as an alias for ‘--pgp7’

--pgp7 Set up all options to be as PGP 7 compliant as possible. This allowed the ciphers
IDEA, 3DES, CAST5,AES128, AES192, AES256, and TWOFISH., the hashes
MD5, SHA1 and RIPEMD160, and the compression algorithms none and ZIP.
This option implies ‘--escape-from-lines’ and disables ‘--throw-keyids’,

--pgp8 Set up all options to be as PGP 8 compliant as possible. PGP 8 is a lot closer
to the OpenPGP standard than previous versions of PGP, so all this does is
disable ‘--throw-keyids’ and set ‘--escape-from-lines’. All algorithms are
allowed except for the SHA224, SHA384, and SHA512 digests.

--compliance string

This option can be used instead of one of the options above. Valid values
for string are the above option names (without the double dash) and possibly
others as shown when using "help" for string.

--min-rsa-length n

This option adjusts the compliance mode "de-vs" for stricter key size require-
ments. For example, a value of 3000 turns rsa2048 and dsa2048 keys into
non-VS-NfD compliant keys.

--require-compliance

To check that data has been encrypted according to the rules of the current
compliance mode, a gpg user needs to evaluate the status lines. This is allows

Chapter 4: Invoking GPG 83

frontends to handle compliance check in a more flexible way. However, for
scripted use the required evaluation of the status-line requires quite some effort;
this option can be used instead to make sure that the gpg process exits with
a failure if the compliance rules are not fulfilled. Note that this option has
currently an effect only in "de-vs" mode.

4.2.6 Doing things one usually doesn’t want to do

-n

--dry-run

Don’t make any changes (this is not completely implemented).

--list-only

Changes the behaviour of some commands. This is like ‘--dry-run’ but differ-
ent in some cases. The semantic of this option may be extended in the future.
Currently it only skips the actual decryption pass and therefore enables a fast
listing of the encryption keys.

-i

--interactive

Prompt before overwriting any files.

--compatibility-flags flags

Set compatibility flags to work around problems due to non-compliant keys or
data. The flags are given as a comma separated list of flag names and are
OR-ed together. The special flag "none" clears the list and allows one to start
over with an empty list. To get a list of available flags the sole word "help" can
be used.

--debug-level level

Select the debug level for investigating problems. level may be a numeric value
or by a keyword:

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

advanced More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

84 Using the GNU Privacy Guard

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g.
0x0042) or as a comma separated list of flag names. To get a list of all supported
flags the single word "help" can be used. This option is only useful for debugging
and the behavior may change at any time without notice.

--debug-all

Set all useful debugging flags.

--debug-iolbf

Set stdout into line buffered mode. This option is only honored when given on
the command line.

--debug-set-iobuf-size n

Change the buffer size of the IOBUFs to n kilobyte. Using 0 prints the current
size. Note well: This is a maintainer only option and may thus be changed or
removed at any time without notice.

--debug-allow-large-chunks

To facilitate software tests and experiments this option allows one to specify a
limit of up to 4 EiB (--chunk-size 62).

--debug-ignore-expiration

This option tries to override certain key expiration dates. It is only useful for
certain regression tests.

--faked-system-time epoch

This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970. Alternatively
epoch may be given as a full ISO time string (e.g. "20070924T154812").

If you suffix epoch with an exclamation mark (!), the system time will appear
to be frozen at the specified time.

--full-timestrings

Change the format of printed creation and expiration times from just the date
to the date and time. This is in general not useful and the same information is
anyway available in ‘--with-colons’ mode. These longer strings are also not
well aligned with other printed data.

--enable-progress-filter

Enable certain PROGRESS status outputs. This option allows frontends to
display a progress indicator while gpg is processing larger files. There is a
slight performance overhead using it.

--status-fd n

Write special status strings to the file descriptor n. See the file DETAILS in
the documentation for a listing of them.

--status-file file

Same as ‘--status-fd’, except the status data is written to file file.

--logger-fd n

Write log output to file descriptor n and not to STDERR.

Chapter 4: Invoking GPG 85

--log-file file

--logger-file file

Same as ‘--logger-fd’, except the logger data is written to file file. Use
‘socket://’ to log to s socket.

--log-time

Prefix all log output with a timestamp even if no log file is used.

--attribute-fd n

Write attribute subpackets to the file descriptor n. This is most useful for use
with ‘--status-fd’, since the status messages are needed to separate out the
various subpackets from the stream delivered to the file descriptor.

--attribute-file file

Same as ‘--attribute-fd’, except the attribute data is written to file file.

--comment string

--no-comments

Use string as a comment string in cleartext signatures and ASCII armored
messages or keys (see ‘--armor’). The default behavior is not to use a comment
string. ‘--comment’ may be repeated multiple times to get multiple comment
strings. ‘--no-comments’ removes all comments. It is a good idea to keep the
length of a single comment below 60 characters to avoid problems with mail
programs wrapping such lines. Note that comment lines, like all other header
lines, are not protected by the signature.

--emit-version

--no-emit-version

Force inclusion of the version string in ASCII armored output. If given once
only the name of the program and the major number is emitted, given twice the
minor is also emitted, given thrice the micro is added, and given four times an
operating system identification is also emitted. ‘--no-emit-version’ (default)
disables the version line.

--sig-notation {name=value}

--cert-notation {name=value}

-N, --set-notation {name=value}

Put the name value pair into the signature as notation data. name must
consist only of printable characters or spaces, and must contain a ’@’ char-
acter in the form keyname@domain.example.com (substituting the appropriate
keyname and domain name, of course). This is to help prevent pollution of
the IETF reserved notation namespace. The ‘--expert’ flag overrides the ’@’
check. value may be any printable string; it will be encoded in UTF-8, so
you should check that your ‘--display-charset’ is set correctly. If you pre-
fix name with an exclamation mark (!), the notation data will be flagged as
critical (rfc4880:5.2.3.16). ‘--sig-notation’ sets a notation for data signa-
tures. ‘--cert-notation’ sets a notation for key signatures (certifications).
‘--set-notation’ sets both.

There are special codes that may be used in notation names. "%k" will be
expanded into the key ID of the key being signed, "%K" into the long key ID

86 Using the GNU Privacy Guard

of the key being signed, "%f" into the fingerprint of the key being signed, "%s"
into the key ID of the key making the signature, "%S" into the long key ID of
the key making the signature, "%g" into the fingerprint of the key making the
signature (which might be a subkey), "%p" into the fingerprint of the primary
key of the key making the signature, "%c" into the signature count from the
OpenPGP smartcard, and "%%" results in a single "%". %k, %K, and %f are
only meaningful when making a key signature (certification), and %c is only
meaningful when using the OpenPGP smartcard.

--known-notation name

Adds name to a list of known critical signature notations. The effect of this
is that gpg will not mark a signature with a critical signature notation of that
name as bad. Note that gpg already knows by default about a few critical
signatures notation names.

--sig-policy-url string

--cert-policy-url string

--set-policy-url string

Use string as a Policy URL for signatures (rfc4880:5.2.3.20). If you prefix it
with an exclamation mark (!), the policy URL packet will be flagged as critical.
‘--sig-policy-url’ sets a policy url for data signatures. ‘--cert-policy-url’
sets a policy url for key signatures (certifications). ‘--set-policy-url’ sets
both.

The same %-expandos used for notation data are available here as well.

--sig-keyserver-url string

Use string as a preferred keyserver URL for data signatures. If you prefix it
with an exclamation mark (!), the keyserver URL packet will be flagged as
critical.

The same %-expandos used for notation data are available here as well.

--set-filename string

Use string as the filename which is stored inside messages. This overrides the
default, which is to use the actual filename of the file being encrypted. Using
the empty string for string effectively removes the filename from the output.

--for-your-eyes-only

--no-for-your-eyes-only

Set the ‘for your eyes only’ flag in the message. This causes GnuPG to refuse
to save the file unless the ‘--output’ option is given, and PGP to use a "secure
viewer" with a claimed Tempest-resistant font to display the message. This
option overrides ‘--set-filename’. ‘--no-for-your-eyes-only’ disables this
option.

--use-embedded-filename

--no-use-embedded-filename

Try to create a file with a name as embedded in the data. This can be a
dangerous option as it enables overwriting files by giving the sender control on
how to store files. Defaults to no. Note that the option ‘--output’ overrides
this option.

Chapter 4: Invoking GPG 87

A better approach than using this option is to decrypt to a temporary filename
and then rename that file to the embedded file name after checking that the
embedded filename is harmless. When using the ‘--status-fd’ option gpg
tells the filename as part of the PLAINTEXT status message. If the filename
is important, the use of gpgtar is another option because gpgtar will never
overwrite a file but decrypt the files to a new directory.

Note also that unless a modern version 5 signature is used the embedded file-
name is not part of the signed data.

--cipher-algo name

Use name as cipher algorithm. Running the program with the command
‘--version’ yields a list of supported algorithms. If this is not used the ci-
pher algorithm is selected from the preferences stored with the key. In general,
you do not want to use this option as it allows you to violate the OpenPGP
standard. The option ‘--personal-cipher-preferences’ is the safe way to
accomplish the same thing.

--digest-algo name

Use name as the message digest algorithm. Running the program with the
command ‘--version’ yields a list of supported algorithms. In general, you do
not want to use this option as it allows you to violate the OpenPGP standard.
The option ‘--personal-digest-preferences’ is the safe way to accomplish
the same thing.

--compress-algo name

Use compression algorithm name. "zlib" is RFC-1950 ZLIB compression. "zip"
is RFC-1951 ZIP compression which is used by PGP. "bzip2" is a more modern
compression scheme that can compress some things better than zip or zlib,
but at the cost of more memory used during compression and decompression.
"uncompressed" or "none" disables compression. If this option is not used,
the default behavior is to examine the recipient key preferences to see which
algorithms the recipient supports. If all else fails, ZIP is used for maximum
compatibility.

ZLIB may give better compression results than ZIP, as the compression window
size is not limited to 8k. BZIP2 may give even better compression results than
that, but will use a significantly larger amount of memory while compressing
and decompressing. This may be significant in low memory situations. Note,
however, that PGP (all versions) only supports ZIP compression. Using any
algorithm other than ZIP or "none" will make the message unreadable with
PGP. In general, you do not want to use this option as it allows you to violate
the OpenPGP standard. The option ‘--personal-compress-preferences’ is
the safe way to accomplish the same thing.

--cert-digest-algo name

Use name as the message digest algorithm used when signing a key. Running the
program with the command ‘--version’ yields a list of supported algorithms.
Be aware that if you choose an algorithm that GnuPG supports but other
OpenPGP implementations do not, then some users will not be able to use the
key signatures you make, or quite possibly your entire key. Note also that a

88 Using the GNU Privacy Guard

public key algorithm must be compatible with the specified digest algorithm;
thus selecting an arbitrary digest algorithm may result in error messages from
lower crypto layers or lead to security flaws.

--disable-cipher-algo name

Never allow the use of name as cipher algorithm. The given name will not be
checked so that a later loaded algorithm will still get disabled.

--disable-pubkey-algo name

Never allow the use of name as public key algorithm. The given name will not
be checked so that a later loaded algorithm will still get disabled.

--throw-keyids

--no-throw-keyids

Do not put the recipient key IDs into encrypted messages. This helps to hide
the receivers of the message and is a limited countermeasure against traffic
analysis.1 On the receiving side, it may slow down the decryption process
because all available secret keys must be tried. ‘--no-throw-keyids’ disables
this option. This option is essentially the same as using ‘--hidden-recipient’
for all recipients.

--not-dash-escaped

This option changes the behavior of cleartext signatures so that they can be
used for patch files. You should not send such an armored file via email because
all spaces and line endings are hashed too. You can not use this option for data
which has 5 dashes at the beginning of a line, patch files don’t have this. A
special armor header line tells GnuPG about this cleartext signature option.

--escape-from-lines

--no-escape-from-lines

Because some mailers change lines starting with "From " to ">From " it is
good to handle such lines in a special way when creating cleartext signatures to
prevent the mail system from breaking the signature. Note that all other PGP
versions do it this way too. Enabled by default. ‘--no-escape-from-lines’
disables this option.

--passphrase-repeat n

Specify how many times gpg will request a new passphrase be repeated. This is
useful for helping memorize a passphrase. Defaults to 1 repetition; can be set
to 0 to disable any passphrase repetition. Note that a n greater than 1 will pop
up the pinentry window n+1 times even if a modern pinentry with two entry
fields is used.

--passphrase-fd n

Read the passphrase from file descriptor n. Only the first line will be read from
file descriptor n. If you use 0 for n, the passphrase will be read from STDIN.
This can only be used if only one passphrase is supplied.

1 Using a little social engineering anyone who is able to decrypt the message can check whether one of the
other recipients is the one he suspects.

Chapter 4: Invoking GPG 89

Note that since Version 2.0 this passphrase is only used if the option ‘--batch’
has also been given. Since Version 2.1 the ‘--pinentry-mode’ also needs to be
set to loopback.

--passphrase-file file

Read the passphrase from file file. Only the first line will be read from file
file. This can only be used if only one passphrase is supplied. Obviously, a
passphrase stored in a file is of questionable security if other users can read this
file. Don’t use this option if you can avoid it.

Note that since Version 2.0 this passphrase is only used if the option ‘--batch’
has also been given. Since Version 2.1 the ‘--pinentry-mode’ also needs to be
set to loopback.

--passphrase string

Use string as the passphrase. This can only be used if only one passphrase
is supplied. Obviously, this is of very questionable security on a multi-user
system. Don’t use this option if you can avoid it.

Note that since Version 2.0 this passphrase is only used if the option ‘--batch’
has also been given. Since Version 2.1 the ‘--pinentry-mode’ also needs to be
set to loopback.

--pinentry-mode mode

Set the pinentry mode to mode. Allowed values for mode are:

default Use the default of the agent, which is ask.

ask Force the use of the Pinentry.

cancel Emulate use of Pinentry’s cancel button.

error Return a Pinentry error (“No Pinentry”).

loopback Redirect Pinentry queries to the caller. Note that in contrast to
Pinentry the user is not prompted again if he enters a bad password.

--no-symkey-cache

Disable the passphrase cache used for symmetrical en- and decryption. This
cache is based on the message specific salt value (cf. ‘--s2k-mode’).

--request-origin origin

Tell gpg to assume that the operation ultimately originated at origin. Depend-
ing on the origin certain restrictions are applied and the Pinentry may include
an extra note on the origin. Supported values for origin are: local which is
the default, remote to indicate a remote origin or browser for an operation
requested by a web browser.

--command-fd n

This is a replacement for the deprecated shared-memory IPC mode. If this
option is enabled, user input on questions is not expected from the TTY but
from the given file descriptor. It should be used together with ‘--status-fd’.
See the file doc/DETAILS in the source distribution for details on how to use
it.

90 Using the GNU Privacy Guard

--command-file file

Same as ‘--command-fd’, except the commands are read out of file file

--allow-non-selfsigned-uid

--no-allow-non-selfsigned-uid

Allow the import and use of keys with user IDs which are not self-signed.
This is not recommended, as a non self-signed user ID is trivial to forge.
‘--no-allow-non-selfsigned-uid’ disables.

--allow-freeform-uid

Disable all checks on the form of the user ID while generating a new one. This
option should only be used in very special environments as it does not ensure
the de-facto standard format of user IDs.

--ignore-time-conflict

GnuPG normally checks that the timestamps associated with keys and signa-
tures have plausible values. However, sometimes a signature seems to be older
than the key due to clock problems. This option makes these checks just a
warning. See also ‘--ignore-valid-from’ for timestamp issues on subkeys.

--ignore-valid-from

GnuPG normally does not select and use subkeys created in the future. This
option allows the use of such keys and thus exhibits the pre-1.0.7 behaviour.
You should not use this option unless there is some clock problem. See also
‘--ignore-time-conflict’ for timestamp issues with signatures.

--ignore-crc-error

The ASCII armor used by OpenPGP is protected by a CRC checksum against
transmission errors. Occasionally the CRC gets mangled somewhere on
the transmission channel but the actual content (which is protected by the
OpenPGP protocol anyway) is still okay. This option allows GnuPG to ignore
CRC errors.

--ignore-mdc-error

This option changes a MDC integrity protection failure into a warning. It is
required to decrypt old messages which did not use an MDC. It may also be
useful if a message is partially garbled, but it is necessary to get as much data
as possible out of that garbled message. Be aware that a missing or failed
MDC can be an indication of an attack. Use with great caution; see also option
‘--rfc2440’.

--allow-old-cipher-algos

Old cipher algorithms like 3DES, IDEA, or CAST5 encrypt data using blocks
of 64 bits; modern algorithms use blocks of 128 bit instead. To avoid certain
attack on these old algorithms it is suggested not to encrypt more than 150
MiByte using the same key. For this reason gpg does not allow the use of 64
bit block size algorithms for encryption unless this option is specified.

--allow-weak-digest-algos

Signatures made with known-weak digest algorithms are normally rejected with
an “invalid digest algorithm” message. This option allows the verification of

Chapter 4: Invoking GPG 91

signatures made with such weak algorithms. MD5 is the only digest algorithm
considered weak by default. See also ‘--weak-digest’ to reject other digest
algorithms.

--weak-digest name

Treat the specified digest algorithm as weak. Signatures made over weak
digests algorithms are normally rejected. This option can be supplied
multiple times if multiple algorithms should be considered weak. See also
‘--allow-weak-digest-algos’ to disable rejection of weak digests. MD5 is
always considered weak, and does not need to be listed explicitly.

--allow-weak-key-signatures

To avoid a minor risk of collision attacks on third-party key signatures made
using SHA-1, those key signatures are considered invalid. This options allows
one to override this restriction.

--override-compliance-check

This was a temporary introduced option and has no more effect.

--no-default-keyring

Do not add the default keyring to the list of keyrings. Note that GnuPG
needs for almost all operations a keyring. Thus if you use this option and do
not provide alternate keyrings via ‘--keyring’, then GnuPG will still use the
default keyring.

Note that if the option ‘use-keyboxd’ is enabled in ‘common.conf’, no keyrings
are used at all and keys are all maintained by the keyboxd process in its own
database.

--no-keyring

Do not use any keyring at all. This overrides the default and all options which
specify keyrings.

--skip-verify

Skip the signature verification step. This may be used to make the decryption
faster if the signature verification is not needed.

--with-key-data

Print key listings delimited by colons (like ‘--with-colons’) and print the
public key data.

--list-signatures

--list-sigs

Same as ‘--list-keys’, but the signatures are listed too. This command has
the same effect as using ‘--list-keys’ with ‘--with-sig-list’. Note that
in contrast to ‘--check-signatures’ the key signatures are not verified. This
command can be used to create a list of signing keys missing in the local keyring;
for example:

gpg --list-sigs --with-colons USERID | \

awk -F: ’$1=="sig" && $2=="?" {if($13){print $13}else{print $5}}’

92 Using the GNU Privacy Guard

--fast-list-mode

Changes the output of the list commands to work faster; this is achieved by
leaving some parts empty. Some applications don’t need the user ID and the
trust information given in the listings. By using this options they can get a
faster listing. The exact behaviour of this option may change in future versions.
If you are missing some information, don’t use this option.

--no-literal

This is not for normal use. Use the source to see for what it might be useful.

--set-filesize

This is not for normal use. Use the source to see for what it might be useful.

--show-session-key

Display the session key used for one message. See ‘--override-session-key’
for the counterpart of this option.

We think that Key Escrow is a Bad Thing; however the user should have the
freedom to decide whether to go to prison or to reveal the content of one specific
message without compromising all messages ever encrypted for one secret key.

You can also use this option if you receive an encrypted message which is abusive
or offensive, to prove to the administrators of the messaging system that the
ciphertext transmitted corresponds to an inappropriate plaintext so they can
take action against the offending user.

--override-session-key string

--override-session-key-fd fd

Don’t use the public key but the session key string respective the session key
taken from the first line read from file descriptor fd. The format of this string is
the same as the one printed by ‘--show-session-key’. This option is normally
not used but comes handy in case someone forces you to reveal the content of an
encrypted message; using this option you can do this without handing out the
secret key. Note that using ‘--override-session-key’ may reveal the session
key to all local users via the global process table. Often it is useful to combine
this option with ‘--no-keyring’.

--ask-sig-expire

--no-ask-sig-expire

When making a data signature, prompt for an expiration time. If this option
is not specified, the expiration time set via ‘--default-sig-expire’ is used.
‘--no-ask-sig-expire’ disables this option.

--default-sig-expire

The default expiration time to use for signature expiration. Valid values are "0"
for no expiration, a number followed by the letter d (for days), w (for weeks),
m (for months), or y (for years) (for example "2m" for two months, or "5y" for
five years), or an absolute date in the form YYYY-MM-DD. Defaults to "0".

Chapter 4: Invoking GPG 93

--ask-cert-expire

--no-ask-cert-expire

When making a key signature, prompt for an expiration time. If this option
is not specified, the expiration time set via ‘--default-cert-expire’ is used.
‘--no-ask-cert-expire’ disables this option.

--default-cert-expire

The default expiration time to use for key signature expiration. Valid values
are "0" for no expiration, a number followed by the letter d (for days), w (for
weeks), m (for months), or y (for years) (for example "2m" for two months, or
"5y" for five years), or an absolute date in the form YYYY-MM-DD. Defaults
to "0".

--default-new-key-algo string

This option can be used to change the default algorithms for key
generation. The string is similar to the arguments required for the
command ‘--quick-add-key’ but slightly different. For example the current
default of "rsa2048/cert,sign+rsa2048/encr" (or "rsa3072") can be
changed to the value of what we currently call future default, which is
"ed25519/cert,sign+cv25519/encr". You need to consult the source code
to learn the details. Note that the advanced key generation commands can
always be used to specify a key algorithm directly.

--no-auto-trust-new-key

When creating a new key the ownertrust of the new key is set to ultimate. This
option disables this and the user needs to manually assign an ownertrust value.

--force-sign-key

This option modifies the behaviour of the commands ‘--quick-sign-key’,
‘--quick-lsign-key’, and the "sign" sub-commands of ‘--edit-key’ by forc-
ing the creation of a key signature, even if one already exists.

--forbid-gen-key

This option is intended for use in the global config file to disallow the use of
generate key commands. Those commands will then fail with the error code for
Not Enabled.

--allow-secret-key-import

This is an obsolete option and is not used anywhere.

--allow-multiple-messages

--no-allow-multiple-messages

These are obsolete options; they have no more effect since GnuPG 2.2.8.

--enable-special-filenames

This option enables a mode in which filenames of the form ‘-&n’, where n is
a non-negative decimal number, refer to the file descriptor n and not to a file
with that name.

--no-expensive-trust-checks

Experimental use only.

94 Using the GNU Privacy Guard

--preserve-permissions

Don’t change the permissions of a secret keyring back to user read/write only.
Use this option only if you really know what you are doing.

--default-preference-list string

Set the list of default preferences to string. This preference list is used for new
keys and becomes the default for "setpref" in the ‘--edit-key’ menu.

--default-keyserver-url name

Set the default keyserver URL to name. This keyserver will be used as the
keyserver URL when writing a new self-signature on a key, which includes key
generation and changing preferences.

--list-config

Display various internal configuration parameters of GnuPG. This option is
intended for external programs that call GnuPG to perform tasks, and is thus
not generally useful. See the file ‘doc/DETAILS’ in the source distribution for
the details of which configuration items may be listed. ‘--list-config’ is only
usable with ‘--with-colons’ set.

--list-gcrypt-config

Display various internal configuration parameters of Libgcrypt.

--gpgconf-list

This command is similar to ‘--list-config’ but in general only internally used
by the gpgconf tool.

--gpgconf-test

This is more or less dummy action. However it parses the configuration file and
returns with failure if the configuration file would prevent gpg from startup.
Thus it may be used to run a syntax check on the configuration file.

--chuid uid

Change the current user to uid which may either be a number or a name. This
can be used from the root account to run gpg for another user. If uid is not the
current UID a standard PATH is set and the envvar GNUPGHOME is unset.
To override the latter the option ‘--homedir’ can be used. This option has only
an effect when used on the command line. This option has currently no effect
at all on Windows.

4.2.7 Deprecated options

-t, --textmode

--no-textmode

Treat input files as text and store them in the OpenPGP canonical text form
with standard "CRLF" line endings. This also sets the necessary flags to in-
form the recipient that the encrypted or signed data is text and may need its
line endings converted back to whatever the local system uses. This option was
useful when communicating between two platforms with different line ending
conventions (UNIX-like to Mac, Mac to Windows, etc). ‘--no-textmode’ dis-
ables this option, and is the default. Note that this is a legacy option which
should not anymore be used by any modern software.

Chapter 4: Invoking GPG 95

--force-v3-sigs

--no-force-v3-sigs

--force-v4-certs

--no-force-v4-certs

These options are obsolete and have no effect since GnuPG 2.1.

--show-photos

--no-show-photos

Causes ‘--list-keys’, ‘--list-signatures’, ‘--list-public-keys’,
‘--list-secret-keys’, and verifying a signature to also display the
photo ID attached to the key, if any. See also ‘--photo-viewer’. These
options are deprecated. Use ‘--list-options [no-]show-photos’ and/or
‘--verify-options [no-]show-photos’ instead.

--show-keyring

Display the keyring name at the head of key listings to show which keyring
a given key resides on. This option is deprecated: use ‘--list-options
[no-]show-keyring’ instead.

--show-notation

--no-show-notation

Show signature notations in the ‘--list-signatures’ or ‘--check-signatures’
listings as well as when verifying a signature with a notation in it. These
options are deprecated. Use ‘--list-options [no-]show-notation’ and/or
‘--verify-options [no-]show-notation’ instead.

--show-policy-url

--no-show-policy-url

Show policy URLs in the ‘--list-signatures’ or ‘--check-signatures’ list-
ings as well as when verifying a signature with a policy URL in it. These op-
tions are deprecated. Use ‘--list-options [no-]show-policy-url’ and/or
‘--verify-options [no-]show-policy-url’ instead.

--personal-aead-preferences string

This option is deprecated and has no more effect since version 2.3.9.

--aead-algo name

This option is deprecated and has no more effect since version 2.3.9.

4.3 Configuration files

There are a few configuration files to control certain aspects of gpg’s operation. Unless
noted, they are expected in the current home directory (see [option –homedir], page 4).

‘gpg.conf’
This is the standard configuration file read by gpg on startup. It may contain
any valid long option; the leading two dashes may not be entered and the option
may not be abbreviated. This default name may be changed on the command
line (see [gpg-option –options], page 61). You should backup this file.

‘common.conf’
This is an optional configuration file read by gpg on startup. It may contain
options pertaining to all components of GnuPG. Its current main use is for the

96 Using the GNU Privacy Guard

"use-keyboxd" option. If the default home directory ‘~/.gnupg’ does not exist,
GnuPG creates this directory and a ‘common.conf’ file with "use-keyboxd".

Note that on larger installations, it is useful to put predefined files into the directory
‘/usr/local/etc/skel/.gnupg’ so that newly created users start up with a working con-
figuration. For existing users a small helper script is provided to create these files (see
Section 10.3 [addgnupghome], page 162).

For internal purposes gpg creates and maintains a few other files; They all live in the
current home directory (see [option –homedir], page 4). Only the gpg program may modify
these files.

‘~/.gnupg’
This is the default home directory which is used if neither the environment
variable GNUPGHOME nor the option ‘--homedir’ is given.

‘~/.gnupg/pubring.gpg’
The public keyring using a legacy format. You should backup this file.

If this file is not available, gpg defaults to the new keybox format and creates
a file ‘pubring.kbx’ unless that file already exists in which case that file will
also be used for OpenPGP keys.

Note that in the case that both files, ‘pubring.gpg’ and ‘pubring.kbx’ exists
but the latter has no OpenPGP keys, the legacy file ‘pubring.gpg’ will be used.
Take care: GnuPG versions before 2.1 will always use the file ‘pubring.gpg’
because they do not know about the new keybox format. In the case that you
have to use GnuPG 1.4 to decrypt archived data you should keep this file.

‘~/.gnupg/pubring.gpg.lock’
The lock file for the public keyring.

‘~/.gnupg/pubring.kbx’
The public keyring using the new keybox format. This file is shared with gpgsm.
You should backup this file. See above for the relation between this file and it
predecessor.

To convert an existing ‘pubring.gpg’ file to the keybox format, you first backup
the ownertrust values, then rename ‘pubring.gpg’ to ‘publickeys.backup’, so
it wont be recognized by any GnuPG version, run import, and finally restore
the ownertrust values:

$ cd ~/.gnupg

$ gpg --export-ownertrust >otrust.lst

$ mv pubring.gpg publickeys.backup

$ gpg --import-options restore --import publickeys.backup

$ gpg --import-ownertrust otrust.lst

‘~/.gnupg/pubring.kbx.lock’
The lock file for ‘pubring.kbx’.

‘~/.gnupg/secring.gpg’
The legacy secret keyring as used by GnuPG versions before 2.1. It is not used
by GnuPG 2.1 and later. You may want to keep it in case you have to use
GnuPG 1.4 to decrypt archived data.

Chapter 4: Invoking GPG 97

‘~/.gnupg/secring.gpg.lock’
The lock file for the legacy secret keyring.

‘~/.gnupg/.gpg-v21-migrated’
File indicating that a migration to GnuPG 2.1 has been done.

‘~/.gnupg/trustdb.gpg’
The trust database. There is no need to backup this file; it is better to backup
the ownertrust values (see [option –export-ownertrust], page 46).

‘~/.gnupg/trustdb.gpg.lock’
The lock file for the trust database.

‘~/.gnupg/random_seed’
A file used to preserve the state of the internal random pool.

‘~/.gnupg/openpgp-revocs.d/’
This is the directory where gpg stores pre-generated revocation certificates.
The file name corresponds to the OpenPGP fingerprint of the respective key.
It is suggested to backup those certificates and if the primary private key is not
stored on the disk to move them to an external storage device. Anyone who
can access these files is able to revoke the corresponding key. You may want to
print them out. You should backup all files in this directory and take care to
keep this backup closed away.

Operation is further controlled by a few environment variables:

HOME Used to locate the default home directory.

GNUPGHOME
If set directory used instead of "~/.gnupg".

GPG AGENT INFO
This variable is obsolete; it was used by GnuPG versions before 2.1.

PINENTRY USER DATA
This value is passed via gpg-agent to pinentry. It is useful to convey extra
information to a custom pinentry.

COLUMNS
LINES Used to size some displays to the full size of the screen.

LANGUAGE
Apart from its use by GNU, it is used in the W32 version to override the
language selection done through the Registry. If used and set to a valid and
available language name (langid), the file with the translation is loaded from
gpgdir/gnupg.nls/langid.mo. Here gpgdir is the directory out of which the
gpg binary has been loaded. If it can’t be loaded the Registry is tried and as
last resort the native Windows locale system is used.

GNUPG BUILD ROOT
This variable is only used by the regression test suite as a helper under operating
systems without proper support to figure out the name of a process’ text file.

98 Using the GNU Privacy Guard

GNUPG EXEC DEBUG FLAGS
This variable allows one to enable diagnostics for process management. A
numeric decimal value is expected. Bit 0 enables general diagnostics, bit 1
enables certain warnings on Windows.

When calling the gpg-agent component gpg sends a set of environment variables to
gpg-agent. The names of these variables can be listed using the command:

gpg-connect-agent ’getinfo std_env_names’ /bye | awk ’$1=="D" {print $2}’

4.4 Examples

gpg -se -r Bob file

sign and encrypt for user Bob

gpg –clear-sign file

make a cleartext signature

gpg -sb file

make a detached signature

gpg -u 0x12345678 -sb file

make a detached signature with the key 0x12345678

gpg –list-keys user_ID
show keys

gpg –fingerprint user_ID
show fingerprint

gpg –verify pgpfile

gpg –verify sigfile [datafile]
Verify the signature of the file but do not output the data unless requested.
The second form is used for detached signatures, where sigfile is the detached
signature (either ASCII armored or binary) and datafile are the signed data;
if this is not given, the name of the file holding the signed data is constructed
by cutting off the extension (".asc" or ".sig") of sigfile or by asking the user
for the filename. If the option ‘--output’ is also used the signed data is written
to the file specified by that option; use - to write the signed data to stdout.

FILTEREXPRESSIONS

The options ‘--import-filter’ and ‘--export-filter’ use expressions with this syntax
(square brackets indicate an optional part and curly braces a repetition, white space between
the elements are allowed):

[lc] {[{flag}] PROPNAME op VALUE [lc]}

The name of a property (PROPNAME) may only consist of letters, digits and under-
scores. The description for the filter type describes which properties are defined. If an
undefined property is used it evaluates to the empty string. Unless otherwise noted, the
VALUE must always be given and may not be the empty string. No quoting is defined for

Chapter 4: Invoking GPG 99

the value, thus the value may not contain the strings && or ||, which are used as logical
connection operators. The flag -- can be used to remove this restriction.

Numerical values are computed as long int; standard C notation applies. lc is the logical
connection operator; either && for a conjunction or || for a disjunction. A conjunction is
assumed at the begin of an expression. Conjunctions have higher precedence than disjunc-
tions. If VALUE starts with one of the characters used in any op a space after the op is
required.

The supported operators (op) are:

=~ Substring must match.

!~ Substring must not match.

= The full string must match.

<> The full string must not match.

== The numerical value must match.

!= The numerical value must not match.

<= The numerical value of the field must be LE than the value.

< The numerical value of the field must be LT than the value.

> The numerical value of the field must be GT than the value.

>= The numerical value of the field must be GE than the value.

-le The string value of the field must be less or equal than the value.

-lt The string value of the field must be less than the value.

-gt The string value of the field must be greater than the value.

-ge The string value of the field must be greater or equal than the value.

-n True if value is not empty (no value allowed).

-z True if value is empty (no value allowed).

-t Alias for "PROPNAME != 0" (no value allowed).

-f Alias for "PROPNAME == 0" (no value allowed).

Values for flag must be space separated. The supported flags are:

– VALUE spans to the end of the expression.

-c The string match in this part is done case-sensitive.

-t Leading and trailing spaces are not removed from VALUE. The optional single
space after op is here required.

The filter options concatenate several specifications for a filter of the same type. For
example the four options in this example:

--import-filter keep-uid="uid =~ Alfa"

--import-filter keep-uid="&& uid !~ Test"

--import-filter keep-uid="|| uid =~ Alpha"

--import-filter keep-uid="uid !~ Test"

which is equivalent to

100 Using the GNU Privacy Guard

--import-filter \

keep-uid="uid =~ Alfa" && uid !~ Test" || uid =~ Alpha" && "uid !~ Test"

imports only the user ids of a key containing the strings "Alfa" or "Alpha" but not the
string "test".

RETURNVALUE

The program returns 0 if there are no severe errors, 1 if at least a signature was bad, and
other error codes for fatal errors.

Note that signature verification requires exact knowledge of what has been signed and
by whom it has been signed. Using only the return code is thus not an appropriate way to
verify a signature by a script. Either make proper use or the status codes or use the gpgv

tool which has been designed to make signature verification easy for scripts.

WARNINGS

Use a good password for your user account and make sure that all security issues are always
fixed on your machine. Also employ diligent physical protection to your machine. Consider
to use a good passphrase as a last resort protection to your secret key in the case your
machine gets stolen. It is important that your secret key is never leaked. Using an easy to
carry around token or smartcard with the secret key is often a advisable.

If you are going to verify detached signatures, make sure that the program knows about
it; either give both filenames on the command line or use ‘-’ to specify STDIN.

For scripted or other unattended use of gpg make sure to use the machine-parseable
interface and not the default interface which is intended for direct use by humans. The
machine-parseable interface provides a stable and well documented API independent of the
locale or future changes of gpg. To enable this interface use the options ‘--with-colons’
and ‘--status-fd’. For certain operations the option ‘--command-fd’ may come handy
too. See this man page and the file ‘DETAILS’ for the specification of the interface. Note
that the GnuPG “info” pages as well as the PDF version of the GnuPG manual features a
chapter on unattended use of GnuPG. As an alternative the library GPGME can be used as
a high-level abstraction on top of that interface.

INTEROPERABILITYWITHOTHER
OPENPGPPROGRAMS

GnuPG tries to be a very flexible implementation of the OpenPGP standard. In particular,
GnuPG implements many of the optional parts of the standard, such as the SHA-512 hash,
and the ZLIB and BZIP2 compression algorithms. It is important to be aware that not
all OpenPGP programs implement these optional algorithms and that by forcing their use
via the ‘--cipher-algo’, ‘--digest-algo’, ‘--cert-digest-algo’, or ‘--compress-algo’
options in GnuPG, it is possible to create a perfectly valid OpenPGP message, but one that
cannot be read by the intended recipient.

Chapter 4: Invoking GPG 101

There are dozens of variations of OpenPGP programs available, and each supports a
slightly different subset of these optional algorithms. For example, until recently, no (un-
hacked) version of PGP supported the BLOWFISH cipher algorithm. A message using
BLOWFISH simply could not be read by a PGP user. By default, GnuPG uses the stan-
dard OpenPGP preferences system that will always do the right thing and create messages
that are usable by all recipients, regardless of which OpenPGP program they use. Only
override this safe default if you really know what you are doing.

If you absolutely must override the safe default, or if the preferences on a given key are
invalid for some reason, you are far better off using the ‘--pgp6’, ‘--pgp7’, or ‘--pgp8’
options. These options are safe as they do not force any particular algorithms in violation
of OpenPGP, but rather reduce the available algorithms to a "PGP-safe" list.

BUGS

On older systems this program should be installed as setuid(root). This is necessary to lock
memory pages. Locking memory pages prevents the operating system from writing memory
pages (which may contain passphrases or other sensitive material) to disk. If you get no
warning message about insecure memory your operating system supports locking without
being root. The program drops root privileges as soon as locked memory is allocated.

Note also that some systems (especially laptops) have the ability to “suspend to disk”
(also known as “safe sleep” or “hibernate”). This writes all memory to disk before going into
a low power or even powered off mode. Unless measures are taken in the operating system
to protect the saved memory, passphrases or other sensitive material may be recoverable
from it later.

Before you report a bug you should first search the mailing list archives for similar
problems and second check whether such a bug has already been reported to our bug
tracker at https://bugs.gnupg.org.

4.5 Unattended Usage

gpg is often used as a backend engine by other software. To help with this a machine inter-
face has been defined to have an unambiguous way to do this. The options ‘--status-fd’
and ‘--batch’ are almost always required for this.

4.5.1 Programmatic use of GnuPG

Please consider using GPGME instead of calling gpg directly. GPGME offers a stable,
backend-independent interface for many cryptographic operations. It supports OpenPGP
and S/MIME, and also allows interaction with various GnuPG components.

GPGME provides a C-API, and comes with bindings for C++, Qt, and Python. Bindings
for other languages are available.

4.5.2 Ephemeral home directories

Sometimes you want to contain effects of some operation, for example you want to import
a key to inspect it, but you do not want this key to be added to your keyring. In earlier
versions of GnuPG, it was possible to specify alternate keyring files for both public and

https://bugs.gnupg.org

102 Using the GNU Privacy Guard

secret keys. In modern GnuPG versions, however, we changed how secret keys are stored in
order to better protect secret key material, and it was not possible to preserve this interface.

The preferred way to do this is to use ephemeral home directories. This technique works
across all versions of GnuPG.

Create a temporary directory, create (or copy) a configuration that meets your needs,
make gpg use this directory either using the environment variable GNUPGHOME, or the
option ‘--homedir’. GPGME supports this too on a per-context basis, by modifying the
engine info of contexts. Now execute whatever operation you like, import and export key
material as necessary. Once finished, you can delete the directory. All GnuPG backend
services that were started will detect this and shut down.

4.5.3 The quick key manipulation interface

Recent versions of GnuPG have an interface to manipulate keys without using the interactive
command ‘--edit-key’. This interface was added mainly for the benefit of GPGME (please
consider using GPGME, see the manual subsection “Programmatic use of GnuPG”). This
interface is described in the subsection “How to manage your keys”.

4.5.4 Unattended key generation

The command ‘--generate-key’ may be used along with the option ‘--batch’ for unat-
tended key generation. This is the most flexible way of generating keys, but it is also the
most complex one. Consider using the quick key manipulation interface described in the
previous subsection “The quick key manipulation interface”.

The parameters for the key are either read from stdin or given as a file on the command
line. The format of the parameter file is as follows: Text only, line length is limited to about
1000 characters. UTF-8 encoding must be used to specify non-ASCII characters. Empty
lines are ignored. Leading and trailing white space is ignored. A hash sign as the first
non white space character indicates a comment line. Control statements are indicated by a
leading percent sign, their arguments are separated by white space from the keyword. Pa-
rameters are specified by a keyword, followed by a colon; arguments are separated by white
space. The first parameter must be ‘Key-Type’ but control statements may be placed any-
where. The order of the parameters does not matter except for ‘Key-Type’. The parameters
are only used for the generated keyblock (primary and subkeys); parameters from previous
sets are not used. Some syntax checks may be performed. Key commences when either the
end of the parameter file is reached, the next ‘Key-Type’ parameter is encountered, or the
control statement ‘%commit’ is encountered.

Control statements:

%echo text
Print text as diagnostic.

%dry-run Suppress actual key generation (useful for syntax checking).

%commit Perform the key generation. Note that an implicit commit is done at the next
Key-Type parameter.

%pubring filename
Do not write the key to the default or commandline given keyring but to file-
name. This must be given before the first commit to take place, duplicate

Chapter 4: Invoking GPG 103

specification of the same filename is ignored, the last filename before a commit
is used. The filename is used until a new filename is used (at commit points)
and all keys are written to that file. If a new filename is given, this file is created
(and overwrites an existing one).

See the previous subsection “Ephemeral home directories” for a more robust
way to contain side-effects.

%secring filename
This option is a no-op for GnuPG 2.1 and later.

See the previous subsection “Ephemeral home directories”.

%ask-passphrase
%no-ask-passphrase

This option is a no-op since GnuPG version 2.1.

%no-protection
Using this option allows the creation of keys without any passphrase protection.
This option is mainly intended for regression tests.

%transient-key
If given the keys are created using a faster and a somewhat less secure random
number generator. This option may be used for keys which are only used for a
short time and do not require full cryptographic strength. It takes only effect
if used together with the control statement ‘%no-protection’.

General Parameters:

Key-Type: algo
Starts a new parameter block by giving the type of the primary key. The
algorithm must be capable of signing. This is a required parameter. algo may
either be an OpenPGP algorithm number or a string with the algorithm name.
The special value ‘default’ may be used for algo to create the default key
type; in this case a ‘Key-Usage’ shall not be given and ‘default’ also be used
for ‘Subkey-Type’.

Key-Length: nbits
The requested length of the generated key in bits. The default is returned by
running the command ‘gpg--gpgconf-list’. For ECC keys this parameter is
ignored.

Key-Curve: curve
The requested elliptic curve of the generated key. This is a required parameter
for ECC keys. It is ignored for non-ECC keys.

Key-Grip: hexstring
This is optional and used to generate a CSR or certificate for an already existing
key. Key-Length will be ignored when given.

Key-Usage: usage-list
Space or comma delimited list of key usages. Allowed values are ‘encrypt’,
‘sign’, and ‘auth’. This is used to generate the key flags. Please make sure
that the algorithm is capable of this usage. Note that OpenPGP requires that

104 Using the GNU Privacy Guard

all primary keys are capable of certification, so no matter what usage is given
here, the ‘cert’ flag will be on. If no ‘Key-Usage’ is specified and the ‘Key-Type’
is not ‘default’, all allowed usages for that particular algorithm are used; if it
is not given but ‘default’ is used the usage will be ‘sign’.

Subkey-Type: algo
This generates a secondary key (subkey). Currently only one subkey can be
handled. See also ‘Key-Type’ above.

Subkey-Length: nbits
Length of the secondary key (subkey) in bits. The default is returned by running
the command ‘gpg--gpgconf-list’.

Subkey-Curve: curve
Key curve for a subkey; similar to ‘Key-Curve’.

Subkey-Usage: usage-list
Key usage lists for a subkey; similar to ‘Key-Usage’.

Passphrase: string
If you want to specify a passphrase for the secret key, enter it here. Default is
to use the Pinentry dialog to ask for a passphrase.

Name-Real: name
Name-Comment: comment
Name-Email: email

The three parts of a user name. Remember to use UTF-8 encoding here. If you
don’t give any of them, no user ID is created.

Expire-Date: iso-date|(number[d|w|m|y])
Set the expiration date for the key (and the subkey). It may either be entered
in ISO date format (e.g. "20000815T145012") or as number of days, weeks,
month or years after the creation date. The special notation "seconds=N" is
also allowed to specify a number of seconds since creation. Without a letter
days are assumed. Note that there is no check done on the overflow of the type
used by OpenPGP for timestamps. Thus you better make sure that the given
value make sense. Although OpenPGP works with time intervals, GnuPG uses
an absolute value internally and thus the last year we can represent is 2105.

Creation-Date: iso-date
Set the creation date of the key as stored in the key information and which is
also part of the fingerprint calculation. Either a date like "1986-04-26" or a full
timestamp like "19860426T042640" may be used. The time is considered to be
UTC. The special notation "seconds=N" may be used to directly specify a the
number of seconds since Epoch (Unix time). If it is not given the current time
is used.

Preferences: string
Set the cipher, hash, and compression preference values for this key. This ex-
pects the same type of string as the sub-command ‘setpref’ in the ‘--edit-key’
menu.

Chapter 4: Invoking GPG 105

Revoker: algo:fpr [sensitive]
Add a designated revoker to the generated key. Algo is the public key algorithm
of the designated revoker (i.e. RSA=1, DSA=17, etc.) fpr is the fingerprint
of the designated revoker. fpr may not contain spaces or colons. The optional
‘sensitive’ flag marks the designated revoker as sensitive information. Only
v4 and v5 keys may be designated revokers.

Keyserver: string
This is an optional parameter that specifies the preferred keyserver URL for
the key.

Handle: string
This is an optional parameter only used with the status lines KEY CREATED
and KEY NOT CREATED. string may be up to 100 characters and should
not contain spaces. It is useful for batch key generation to associate a key
parameter block with a status line.

Here is an example on how to create a key in an ephemeral home directory:

$ export GNUPGHOME="$(mktemp -d)"

$ cat >foo <<EOF

%echo Generating a basic OpenPGP key

Key-Type: DSA

Key-Length: 1024

Subkey-Type: ELG-E

Subkey-Length: 1024

Name-Real: Joe Tester

Name-Comment: with stupid passphrase

Name-Email: joe@foo.bar

Expire-Date: 0

Passphrase: abc

Do a commit here, so that we can later print "done" :-)

%commit

%echo done

EOF

$ gpg

--batch --generate-key foo

[...]

$ gpg

--list-secret-keys

/tmp/tmp.0NQxB74PEf/pubring.kbx

sec dsa1024 2016-12-16 [SCA]

768E895903FC1C44045C8CB95EEBDB71E9E849D0

uid [ultimate] Joe Tester (with stupid passphrase) <joe@foo.bar>

ssb elg1024 2016-12-16 [E]

If you want to create a key with the default algorithms you would use these parameters:

%echo Generating a default key

Key-Type: default

Subkey-Type: default

Name-Real: Joe Tester

Name-Comment: with stupid passphrase

Name-Email: joe@foo.bar

Expire-Date: 0

Passphrase: abc

Do a commit here, so that we can later print "done" :-)

106 Using the GNU Privacy Guard

%commit

%echo done

Chapter 5: Invoking GPGSM 107

5 Invoking GPGSM

gpgsm is a tool similar to gpg to provide digital encryption and signing services on X.509
certificates and the CMS protocol. It is mainly used as a backend for S/MIME mail pro-
cessing. gpgsm includes a full featured certificate management and complies with all rules
defined for the German Sphinx project.

See [Option Index], page 225, for an index to GPGSM’s commands and options.

5.1 Commands

Commands are not distinguished from options except for the fact that only one command
is allowed.

5.1.1 Commands not specific to the function

--version

Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help, -h

Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.

--warranty

Print warranty information. Note that you cannot abbreviate this command.

--dump-options

Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

5.1.2 Commands to select the type of operation

--encrypt

Perform an encryption. The keys the data is encrypted to must be set using
the option ‘--recipient’.

--decrypt

Perform a decryption; the type of input is automatically determined. It may
either be in binary form or PEM encoded; automatic determination of base-64
encoding is not done.

--sign Create a digital signature. The key used is either the fist one found in the
keybox or those set with the ‘--local-user’ option.

--verify Check a signature file for validity. Depending on the arguments a detached
signature may also be checked.

--server Run in server mode and wait for commands on the stdin.

--call-dirmngr command [args]

Behave as a Dirmngr client issuing the request command with the optional list of
args. The output of the Dirmngr is printed stdout. Please note that file names
given as arguments should have an absolute file name (i.e. commencing with /)

108 Using the GNU Privacy Guard

because they are passed verbatim to the Dirmngr and the working directory of
the Dirmngr might not be the same as the one of this client. Currently it is not
possible to pass data via stdin to the Dirmngr. command should not contain
spaces.

This is command is required for certain maintaining tasks of the dirmngr where
a dirmngr must be able to call back to gpgsm. See the Dirmngr manual for
details.

--call-protect-tool arguments

Certain maintenance operations are done by an external program call gpg-
protect-tool; this is usually not installed in a directory listed in the PATH
variable. This command provides a simple wrapper to access this tool. ar-
guments are passed verbatim to this command; use ‘--help’ to get a list of
supported operations.

5.1.3 How to manage the certificates and keys

--generate-key

--gen-key

This command allows the creation of a certificate signing request or a self-signed
certificate. It is commonly used along with the ‘--output’ option to save the
created CSR or certificate into a file. If used with the ‘--batch’ a parameter
file is used to create the CSR or certificate and it is further possible to create
non-self-signed certificates.

--list-keys

-k List all available certificates stored in the local key database. Note that the
displayed data might be reformatted for better human readability and illegal
characters are replaced by safe substitutes.

--list-secret-keys

-K List all available certificates for which a corresponding a secret key is available.

--list-external-keys pattern

List certificates matching pattern using an external server. This utilizes the
dirmngr service.

--list-chain

Same as ‘--list-keys’ but also prints all keys making up the chain.

--dump-cert

--dump-keys

List all available certificates stored in the local key database using a format
useful mainly for debugging.

--dump-chain

Same as ‘--dump-keys’ but also prints all keys making up the chain.

--dump-secret-keys

List all available certificates for which a corresponding a secret key is available
using a format useful mainly for debugging.

Chapter 5: Invoking GPGSM 109

--dump-external-keys pattern

List certificates matching pattern using an external server. This utilizes the
dirmngr service. It uses a format useful mainly for debugging.

--show-certs [files]

This command takes certificate files as input and prints information about them
in the same format as ‘--dump-cert’ does. Each file may either contain a single
binary certificate or several PEM encoded certificates. If no files are given, the
input is taken from stdin.

Please note that the listing format may be changed in future releases and that
the option ‘--with-colons’ has currently no effect.

--keydb-clear-some-cert-flags

This is a debugging aid to reset certain flags in the key database which are
used to cache certain certificate statuses. It is especially useful if a bad CRL or
a weird running OCSP responder did accidentally revoke certificate. There is
no security issue with this command because gpgsm always make sure that the
validity of a certificate is checked right before it is used.

--delete-keys pattern

Delete the keys matching pattern. Note that there is no command to delete the
secret part of the key directly. In case you need to do this, you should run the
command gpgsm --dump-secret-keys KEYID before you delete the key, copy
the string of hex-digits in the “keygrip” line and delete the file consisting of
these hex-digits and the suffix .key from the ‘private-keys-v1.d’ directory
below our GnuPG home directory (usually ‘~/.gnupg’).

--export [pattern]

Export all certificates stored in the Keybox or those specified by the optional
pattern. Those pattern consist of a list of user ids (see [how-to-specify-a-user-
id], page 139). When used along with the ‘--armor’ option a few informational
lines are prepended before each block. There is one limitation: As there is no
commonly agreed upon way to pack more than one certificate into an ASN.1
structure, the binary export (i.e. without using ‘armor’) works only for the
export of one certificate. Thus it is required to specify a pattern which yields
exactly one certificate. Ephemeral certificate are only exported if all pattern
are given as fingerprints or keygrips.

--export-secret-key-p12 key-id

Export the private key and the certificate identified by key-id using the
PKCS#12 format. When used with the --armor option a few informational
lines are prepended to the output. Note, that the PKCS#12 format is not very
secure and proper transport security should be used to convey the exported
key. (See [option –p12-charset], page 113.)

--export-secret-key-p8 key-id

--export-secret-key-raw key-id

Export the private key of the certificate identified by key-id with any encryption
stripped. The ...-raw command exports in PKCS#1 format; the ...-p8

command exports in PKCS#8 format. When used with the --armor option

110 Using the GNU Privacy Guard

a few informational lines are prepended to the output. These commands are
useful to prepare a key for use on a TLS server.

--import [files]

Import the certificates from the PEM or binary encoded files as well as from
signed-only messages. This command may also be used to import a secret key
from a PKCS#12 file.

--learn-card

Read information about the private keys from the smartcard and import the
certificates from there. This command utilizes the gpg-agent and in turn the
scdaemon.

--change-passphrase user_id

--passwd user_id

Change the passphrase of the private key belonging to the certificate specified
as user id. Note, that changing the passphrase/PIN of a smartcard is not yet
supported.

5.2 Option Summary

GPGSM features a bunch of options to control the exact behaviour and to change the default
configuration.

5.2.1 How to change the configuration

These options are used to change the configuration and are usually found in the option file.

--options file

Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘gpgsm.conf’ and expected in the
‘.gnupg’ directory directly below the home directory of the user.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

-v

--verbose

Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to gpgsm, such as ‘-vv’.

--keyserver string

This is a deprecated option. It was used to add an LDAP server to use for X.509
certificate and CRL lookup. The alias ‘--ldapserver’ existed from version
2.2.28 to 2.2.33 and 2.3.2 to 2.3.4 but is now entirely ignored.

Chapter 5: Invoking GPGSM 111

LDAP servers must be given in the configuration for dirmngr.

--policy-file filename

Change the default name of the policy file to filename. The default name is
‘policies.txt’.

--agent-program file

Specify an agent program to be used for secret key operations. The default
value is determined by running the command gpgconf. Note that the pipe
symbol (|) is used for a regression test suite hack and may thus not be used in
the file name.

--dirmngr-program file

Specify a dirmngr program to be used for CRL checks. The default value is
‘/usr/local/bin/dirmngr’.

--prefer-system-dirmngr

This option is obsolete and ignored.

--disable-dirmngr

Entirely disable the use of the Dirmngr.

--no-autostart

Do not start the gpg-agent or the dirmngr if it has not yet been started and
its service is required. This option is mostly useful on machines where the
connection to gpg-agent has been redirected to another machines. If dirmngr
is required on the remote machine, it may be started manually using gpgconf

--launch dirmngr.

--no-secmem-warning

Do not print a warning when the so called "secure memory" cannot be used.

--log-file file

When running in server mode, append all logging output to file. Use
‘socket://’ to log to socket.

--log-time

Prefix all log output with a timestamp even if no log file is used.

5.2.2 Certificate related options

--enable-policy-checks

--disable-policy-checks

By default policy checks are enabled. These options may be used to change it.

--enable-crl-checks

--disable-crl-checks

By default the CRL checks are enabled and the DirMngr is used to check for
revoked certificates. The disable option is most useful with an off-line network
connection to suppress this check and also to avoid that new certificates intro-
duce a web bug by including a certificate specific CRL DP. The disable option
also disables an issuer certificate lookup via the authorityInfoAccess property
of the certificate; the ‘--enable-issuer-key-retrieve’ can be used to make
use of that property anyway.

112 Using the GNU Privacy Guard

--enable-trusted-cert-crl-check

--disable-trusted-cert-crl-check

By default the CRL for trusted root certificates are checked like for any other
certificates. This allows a CA to revoke its own certificates voluntary without
the need of putting all ever issued certificates into a CRL. The disable option
may be used to switch this extra check off. Due to the caching done by the
Dirmngr, there will not be any noticeable performance gain. Note, that this
also disables possible OCSP checks for trusted root certificates. A more specific
way of disabling this check is by adding the “relax” keyword to the root CA
line of the ‘trustlist.txt’

--force-crl-refresh

Tell the dirmngr to reload the CRL for each request. For better performance,
the dirmngr will actually optimize this by suppressing the loading for short
time intervals (e.g. 30 minutes). This option is useful to make sure that a fresh
CRL is available for certificates hold in the keybox. The suggested way of doing
this is by using it along with the option ‘--with-validation’ for a key listing
command. This option should not be used in a configuration file.

--enable-issuer-based-crl-check

Run a CRL check even for certificates which do not have any CRL distribution
point. This requires that a suitable LDAP server has been configured in Dirm-
ngr and that the CRL can be found using the issuer. This option reverts to
what GnuPG did up to version 2.2.20. This option is in general not useful.

--enable-ocsp

--disable-ocsp

By default OCSP checks are disabled. The enable option may be used to en-
able OCSP checks via Dirmngr. If CRL checks are also enabled, CRLs will be
used as a fallback if for some reason an OCSP request will not succeed. Note,
that you have to allow OCSP requests in Dirmngr’s configuration too (option
‘--allow-ocsp’) and configure Dirmngr properly. If you do not do so you will
get the error code ‘Not supported’.

--auto-issuer-key-retrieve

If a required certificate is missing while validating the chain of certificates, try
to load that certificate from an external location. This usually means that
Dirmngr is employed to search for the certificate. Note that this option makes
a "web bug" like behavior possible. LDAP server operators can see which keys
you request, so by sending you a message signed by a brand new key (which
you naturally will not have on your local keybox), the operator can tell both
your IP address and the time when you verified the signature. Note that if
CRL checking is not disabled issuer certificates are retrieved in any case using
the caIssuers authorityInfoAccess method.

--validation-model name

This option changes the default validation model. The only possible values
are "shell" (which is the default), "chain" which forces the use of the chain
model and "steed" for a new simplified model. The chain model is also used if

Chapter 5: Invoking GPGSM 113

an option in the ‘trustlist.txt’ or an attribute of the certificate requests it.
However the standard model (shell) is in that case always tried first.

--ignore-cert-extension oid

Add oid to the list of ignored certificate extensions. The oid is expected to be
in dotted decimal form, like 2.5.29.3. This option may be used more than
once. Critical flagged certificate extensions matching one of the OIDs in the
list are treated as if they are actually handled and thus the certificate will not
be rejected due to an unknown critical extension. Use this option with care
because extensions are usually flagged as critical for a reason.

5.2.3 Input and Output

--armor

-a Create PEM encoded output. Default is binary output.

--base64 Create Base-64 encoded output; i.e. PEM without the header lines.

--assume-armor

Assume the input data is PEM encoded. Default is to autodetect the encoding
but this is may fail.

--assume-base64

Assume the input data is plain base-64 encoded.

--assume-binary

Assume the input data is binary encoded.

--input-size-hint n

This option can be used to tell GPGSM the size of the input data in bytes.
n must be a positive base-10 number. It is used by the ‘--status-fd’ line
“PROGRESS” to provide a value for “total” if that is not available by other
means.

--p12-charset name

gpgsm uses the UTF-8 encoding when encoding passphrases for PKCS#12 files.
This option may be used to force the passphrase to be encoded in the specified
encoding name. This is useful if the application used to import the key uses
a different encoding and thus will not be able to import a file generated by
gpgsm. Commonly used values for name are Latin1 and CP850. Note that
gpgsm itself automagically imports any file with a passphrase encoded to the
most commonly used encodings.

--default-key user_id

Use user id as the standard key for signing. This key is used if no other key
has been defined as a signing key. Note, that the first ‘--local-users’ option
also sets this key if it has not yet been set; however ‘--default-key’ always
overrides this.

--local-user user_id

-u user_id

Set the user(s) to be used for signing. The default is the first secret key found
in the database.

114 Using the GNU Privacy Guard

--recipient name

-r Encrypt to the user id name. There are several ways a user id may be given
(see [how-to-specify-a-user-id], page 139).

--output file

-o file Write output to file. The default is to write it to stdout.

--with-key-data

Displays extra information with the --list-keys commands. Especially a line
tagged grp is printed which tells you the keygrip of a key. This string is for
example used as the file name of the secret key. Implies --with-colons.

--with-validation

When doing a key listing, do a full validation check for each key and print the
result. This is usually a slow operation because it requires a CRL lookup and
other operations.

When used along with ‘--import’, a validation of the certificate to import is
done and only imported if it succeeds the test. Note that this does not affect an
already available certificate in the DB. This option is therefore useful to simply
verify a certificate.

--with-md5-fingerprint

For standard key listings, also print the MD5 fingerprint of the certificate.

--with-keygrip

Include the keygrip in standard key listings. Note that the keygrip is always
listed in ‘--with-colons’ mode.

--with-secret

Include info about the presence of a secret key in public key listings done with
--with-colons.

--no-pretty-dn

By default gpgsm prints distinguished names (DNs) like the Issuer or Subject in
a more readable format (e.g. using a well defined order of the parts). However,
this format can’t be used as input strings. This option reverts printing to
standard RFC-2253 format and thus avoids the need to use –dump-cert or –
with-colons to get the “real” name.

5.2.4 How to change how the CMS is created

--include-certs n

Using n of -2 includes all certificate except for the root cert, -1 includes all
certs, 0 does not include any certs, 1 includes only the signers cert and all other
positive values include up to n certificates starting with the signer cert. The
default is -2.

--cipher-algo oid

Use the cipher algorithm with the ASN.1 object identifier oid for encryption.
For convenience the strings 3DES, AES and AES256 may be used instead of their
OIDs. The default is AES (2.16.840.1.101.3.4.1.2).

Chapter 5: Invoking GPGSM 115

--digest-algo name

Use name as the message digest algorithm. Usually this algorithm is deduced
from the respective signing certificate. This option forces the use of the given
algorithm and may lead to severe interoperability problems.

5.2.5 Doing things one usually do not want to do

--chuid uid

Change the current user to uid which may either be a number or a name. This
can be used from the root account to run gpgsm for another user. If uid is
not the current UID a standard PATH is set and the envvar GNUPGHOME is
unset. To override the latter the option ‘--homedir’ can be used. This option
has only an effect when used on the command line. This option has currently
no effect at all on Windows.

--extra-digest-algo name

Sometimes signatures are broken in that they announce a different digest al-
gorithm than actually used. gpgsm uses a one-pass data processing model and
thus needs to rely on the announced digest algorithms to properly hash the
data. As a workaround this option may be used to tell gpgsm to also hash the
data using the algorithm name; this slows processing down a little bit but al-
lows verification of such broken signatures. If gpgsm prints an error like “digest
algo 8 has not been enabled” you may want to try this option, with ‘SHA256’
for name.

--compliance string

Set the compliance mode. Valid values are shown when using "help" for string.

--min-rsa-length n

This option adjusts the compliance mode "de-vs" for stricter key size require-
ments. For example, a value of 3000 turns rsa2048 and dsa2048 keys into
non-VS-NfD compliant keys.

--require-compliance

To check that data has been encrypted according to the rules of the current
compliance mode, a gpgsm user needs to evaluate the status lines. This is
allows frontends to handle compliance check in a more flexible way. However,
for scripted use the required evaluation of the status-line requires quite some
effort; this option can be used instead to make sure that the gpgsm process exits
with a failure if the compliance rules are not fulfilled. Note that this option has
currently an effect only in "de-vs" mode.

--assert-signer fpr_or_file

This option checks whether at least one valid signature on a file has been made
with the specified key. The key is either specified as a fingerprint or a file
listing fingerprints. The fingerprint must be given or listed in compact format
(no colons or spaces in between). As of now only SHA-1 fingerprints are allowed.
This option can be given multiple times and each fingerprint is checked against
the signing key as well as the corresponding primary key. If fpr or file specifies
a file, empty lines are ignored as well as all lines starting with a hash sign. With

116 Using the GNU Privacy Guard

this option gpgsm is guaranteed to return with an exit code of 0 if and only
if a signature has been encountered, is valid, and the key matches one of the
fingerprints given by this option.

--always-trust

Force encryption to the specified certificates without any validation of the cer-
tificate chain. The only requirement is that the certificate is capable of encryp-
tion. Note that this option is ineffective if ‘--require-compliance’ is used.

--ignore-cert-with-oid oid

Add oid to the list of OIDs to be checked while reading certificates from smart-
cards. The oid is expected to be in dotted decimal form, like 2.5.29.3. This
option may be used more than once. As of now certificates with an extended
key usage matching one of those OIDs are ignored during a ‘--learn-card’ op-
eration and not imported. This option can help to keep the local key database
clear of unneeded certificates stored on smartcards.

--faked-system-time epoch

This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970. Alternatively
epoch may be given as a full ISO time string (e.g. "20070924T154812").

--with-ephemeral-keys

Include ephemeral flagged keys in the output of key listings. Note that they
are included anyway if the key specification for a listing is given as fingerprint
or keygrip.

--compatibility-flags flags

Set compatibility flags to work around problems due to non-compliant certifi-
cates or data. The flags are given as a comma separated list of flag names
and are OR-ed together. The special flag "none" clears the list and allows one
to start over with an empty list. To get a list of available flags the sole word
"help" can be used.

--debug-level level

Select the debug level for investigating problems. level may be a numeric value
or by a keyword:

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

advanced More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

Chapter 5: Invoking GPGSM 117

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g.
0x0042) or as a comma separated list of flag names. To get a list of all supported
flags the single word "help" can be used. This option is only useful for debugging
and the behavior may change at any time without notice.

Note, that all flags set using this option may get overridden by --debug-level.

--debug-all

Same as --debug=0xffffffff

--debug-allow-core-dump

Usually gpgsm tries to avoid dumping core by well written code and by disabling
core dumps for security reasons. However, bugs are pretty durable beasts and
to squash them it is sometimes useful to have a core dump. This option enables
core dumps unless the Bad Thing happened before the option parsing.

--debug-no-chain-validation

This is actually not a debugging option but only useful as such. It lets gpgsm
bypass all certificate chain validation checks.

--debug-ignore-expiration

This is actually not a debugging option but only useful as such. It lets gpgsm
ignore all notAfter dates, this is used by the regression tests.

--passphrase-fd n

Read the passphrase from file descriptor n. Only the first line will be read from
file descriptor n. If you use 0 for n, the passphrase will be read from STDIN.
This can only be used if only one passphrase is supplied.

Note that this passphrase is only used if the option ‘--batch’ has also been
given.

--pinentry-mode mode

Set the pinentry mode to mode. Allowed values for mode are:

default Use the default of the agent, which is ask.

ask Force the use of the Pinentry.

cancel Emulate use of Pinentry’s cancel button.

error Return a Pinentry error (“No Pinentry”).

loopback Redirect Pinentry queries to the caller. Note that in contrast to
Pinentry the user is not prompted again if he enters a bad password.

--request-origin origin

Tell gpgsm to assume that the operation ultimately originated at origin. De-
pending on the origin certain restrictions are applied and the Pinentry may
include an extra note on the origin. Supported values for origin are: local

which is the default, remote to indicate a remote origin or browser for an
operation requested by a web browser.

118 Using the GNU Privacy Guard

--no-common-certs-import

Suppress the import of common certificates on keybox creation.

All the long options may also be given in the configuration file after stripping off the
two leading dashes.

5.3 Configuration files

There are a few configuration files to control certain aspects of gpgsm’s operation. Unless
noted, they are expected in the current home directory (see [option –homedir], page 4).

‘gpgsm.conf’
This is the standard configuration file read by gpgsm on startup. It may contain
any valid long option; the leading two dashes may not be entered and the option
may not be abbreviated. This default name may be changed on the command
line (see [gpgsm-option –options], page 110). You should backup this file.

‘common.conf’
This is an optional configuration file read by gpgsm on startup. It may contain
options pertaining to all components of GnuPG. Its current main use is for the
"use-keyboxd" option.

‘policies.txt’
This is a list of allowed CA policies. This file should list the object identifiers
of the policies line by line. Empty lines and lines starting with a hash mark are
ignored. Policies missing in this file and not marked as critical in the certificate
will print only a warning; certificates with policies marked as critical and not
listed in this file will fail the signature verification. You should backup this file.

For example, to allow only the policy 2.289.9.9, the file should look like this:

Allowed policies

2.289.9.9

‘qualified.txt’
This is the list of root certificates used for qualified certificates. They are defined
as certificates capable of creating legally binding signatures in the same way as
handwritten signatures are. Comments start with a hash mark and empty lines
are ignored. Lines do have a length limit but this is not a serious limitation as
the format of the entries is fixed and checked by gpgsm: A non-comment line
starts with optional whitespace, followed by exactly 40 hex characters, white
space and a lowercased 2 letter country code. Additional data delimited with
by a white space is current ignored but might late be used for other purposes.

Note that even if a certificate is listed in this file, this does not mean that the
certificate is trusted; in general the certificates listed in this file need to be
listed also in ‘trustlist.txt’. This is a global file an installed in the sysconf
directory (e.g. ‘/usr/local/etc/gnupg/qualified.txt’).

Every time gpgsm uses a certificate for signing or verification this file will be
consulted to check whether the certificate under question has ultimately been
issued by one of these CAs. If this is the case the user will be informed that the
verified signature represents a legally binding (“qualified”) signature. When

Chapter 5: Invoking GPGSM 119

creating a signature using such a certificate an extra prompt will be issued to
let the user confirm that such a legally binding signature shall really be created.

Because this software has not yet been approved for use with such certificates,
appropriate notices will be shown to indicate this fact.

‘help.txt’
This is plain text file with a few help entries used with pinentry as well as
a large list of help items for gpg and gpgsm. The standard file has English
help texts; to install localized versions use filenames like ‘help.LL.txt’ with
LL denoting the locale. GnuPG comes with a set of predefined help files in
the data directory (e.g. ‘/usr/local/share/gnupg/gnupg/help.de.txt’) and
allows overriding of any help item by help files stored in the system configuration
directory (e.g. ‘/usr/local/etc/gnupg/help.de.txt’). For a reference of the
help file’s syntax, please see the installed ‘help.txt’ file.

‘com-certs.pem’
This file is a collection of common certificates used to populated a
newly created ‘pubring.kbx’. An administrator may replace this file
with a custom one. The format is a concatenation of PEM encoded
X.509 certificates. This global file is installed in the data directory (e.g.
‘/usr/local/share/gnupg/com-certs.pem’).

Note that on larger installations, it is useful to put predefined files into the directory
‘/etc/skel/.gnupg/’ so that newly created users start up with a working configuration.
For existing users a small helper script is provided to create these files (see Section 10.3
[addgnupghome], page 162).

For internal purposes gpgsm creates and maintains a few other files; they all live in the
current home directory (see [option –homedir], page 4). Only gpgsm may modify these files.

‘pubring.kbx’
This a database file storing the certificates as well as meta information. For
debugging purposes the tool kbxutilmay be used to show the internal structure
of this file. You should backup this file.

‘random_seed’
This content of this file is used to maintain the internal state of the random
number generator across invocations. The same file is used by other programs
of this software too.

‘S.gpg-agent’
If this file exists gpgsm will first try to connect to this socket for accessing gpg-

agent before starting a new gpg-agent instance. Under Windows this socket
(which in reality be a plain file describing a regular TCP listening port) is the
standard way of connecting the gpg-agent.

5.4 Examples

$ gpgsm -er goo@bar.net <plaintext >ciphertext

120 Using the GNU Privacy Guard

5.5 Unattended Usage

gpgsm is often used as a backend engine by other software. To help with this a machine
interface has been defined to have an unambiguous way to do this. This is most likely used
with the --server command but may also be used in the standard operation mode by using
the --status-fd option.

5.5.1 Automated signature checking

It is very important to understand the semantics used with signature verification. Checking
a signature is not as simple as it may sound and so the operation is a bit complicated. In
most cases it is required to look at several status lines. Here is a table of all cases a signed
message may have:

The signature is valid
This does mean that the signature has been successfully verified, the certificates
are all sane. However there are two subcases with important information: One
of the certificates may have expired or a signature of a message itself as expired.
It is a sound practise to consider such a signature still as valid but additional
information should be displayed. Depending on the subcase gpgsm will issue
these status codes:

signature valid and nothing did expire
GOODSIG, VALIDSIG, TRUST_FULLY

signature valid but at least one certificate has expired
EXPKEYSIG, VALIDSIG, TRUST_FULLY

signature valid but expired
EXPSIG, VALIDSIG, TRUST_FULLY Note, that this case is currently
not implemented.

The signature is invalid
This means that the signature verification failed (this is an indication of a
transfer error, a program error or tampering with the message). gpgsm issues
one of these status codes sequences:

BADSIG

GOODSIG, VALIDSIG TRUST_NEVER

Error verifying a signature
For some reason the signature could not be verified, i.e. it cannot be decided
whether the signature is valid or invalid. A common reason for this is a missing
certificate.

5.5.2 CSR and certificate creation

The command ‘--generate-key’ may be used along with the option ‘--batch’ to either
create a certificate signing request (CSR) or an X.509 certificate. This is controlled by a
parameter file; the format of this file is as follows:

• Text only, line length is limited to about 1000 characters.

• UTF-8 encoding must be used to specify non-ASCII characters.

Chapter 5: Invoking GPGSM 121

• Empty lines are ignored.

• Leading and trailing while space is ignored.

• A hash sign as the first non white space character indicates a comment line.

• Control statements are indicated by a leading percent sign, the arguments are separated
by white space from the keyword.

• Parameters are specified by a keyword, followed by a colon. Arguments are separated
by white space.

• The first parameter must be ‘Key-Type’, control statements may be placed anywhere.

• The order of the parameters does not matter except for ‘Key-Type’ which must be the
first parameter. The parameters are only used for the generated CSR/certificate; pa-
rameters from previous sets are not used. Some syntactically checks may be performed.

• Key generation takes place when either the end of the parameter file is reached, the
next ‘Key-Type’ parameter is encountered or at the control statement ‘%commit’ is
encountered.

Control statements:

%echo text
Print text as diagnostic.

%dry-run Suppress actual key generation (useful for syntax checking).

%commit Perform the key generation. Note that an implicit commit is done at the next
Key-Type parameter.

General Parameters:

Key-Type: algo
Starts a new parameter block by giving the type of the primary key. The
algorithm must be capable of signing. This is a required parameter. The
supported values for algo are ‘rsa’, ‘ecdsa’, and ‘eddsa’.

Key-Length: nbits
The requested length of a generated key in bits. Defaults to 3072. The value is
ignored for ECC algorithms.

Key-Grip: hexstring
This is optional and used to generate a CSR or certificate for an already existing
key. Key-Length will be ignored when given.

Key-Usage: usage-list
Space or comma delimited list of key usage, allowed values are ‘encrypt’, ‘sign’
and ‘cert’. This is used to generate the keyUsage extension. Please make sure
that the algorithm is capable of this usage. Default is to allow encrypt and
sign.

Name-DN: subject-name
This is the Distinguished Name (DN) of the subject in RFC-2253 format.

Name-Email: string
This is an email address for the altSubjectName. This parameter is optional
but may occur several times to add several email addresses to a certificate.

122 Using the GNU Privacy Guard

Name-DNS: string
The is an DNS name for the altSubjectName. This parameter is optional but
may occur several times to add several DNS names to a certificate.

Name-URI: string
This is an URI for the altSubjectName. This parameter is optional but may
occur several times to add several URIs to a certificate.

Additional parameters used to create a certificate (in contrast to a certificate signing re-
quest):

Serial: sn If this parameter is given an X.509 certificate will be generated. sn is expected
to be a hex string representing an unsigned integer of arbitrary length. The
special value ‘random’ can be used to create a 64 bit random serial number.

Issuer-DN: issuer-name
This is the DN name of the issuer in RFC-2253 format. If it is not set it will
default to the subject DN and a special GnuPG extension will be included in
the certificate to mark it as a standalone certificate.

Creation-Date: iso-date
Not-Before: iso-date

Set the notBefore date of the certificate. Either a date like ‘1986-04-26’ or
‘1986-04-26 12:00’ or a standard ISO timestamp like ‘19860426T042640’ may
be used. The time is considered to be UTC. If it is not given the current date
is used.

Expire-Date: iso-date
Not-After: iso-date

Set the notAfter date of the certificate. Either a date like ‘2063-04-05’ or
‘2063-04-05 17:00’ or a standard ISO timestamp like ‘20630405T170000’ may
be used. The time is considered to be UTC. If it is not given a default value in
the not too far future is used.

Signing-Key: keygrip
This gives the keygrip of the key used to sign the certificate. If it is not given
a self-signed certificate will be created. For compatibility with future versions,
it is suggested to prefix the keygrip with a ‘&’.

Hash-Algo: hash-algo
Use hash-algo for this CSR or certificate. The supported hash algorithms are:
‘sha1’, ‘sha256’, ‘sha384’ and ‘sha512’; they may also be specified with upper-
case letters. The default is ‘sha256’.

Authority-Key-Id: hexstring
Insert the decoded value of hexstring as authorityKeyIdentifier. If this is not
given and an ECC algorithm is used the public part of the certified public key
is used as authorityKeyIdentifier. To inhibit any authorityKeyIdentifier use the
special value none for hexstring.

Subject-Key-Id: hexstring
Insert the decoded value of hexstring as subjectKeyIdentifier. If this is not
given and an ECC algorithm is used the public part of the signing key is used

Chapter 5: Invoking GPGSM 123

as authorityKeyIdentifier. To inhibit any subjectKeyIdentifier use the special
value none for hexstring.

5.6 The Protocol the Server Mode Uses

Description of the protocol used to access GPGSM. GPGSM does implement the Assuan protocol
and in addition provides a regular command line interface which exhibits a full client to
this protocol (but uses internal linking). To start gpgsm as a server the command line the
option --servermust be used. Additional options are provided to select the communication
method (i.e. the name of the socket).

We assume that the connection has already been established; see the Assuan manual for
details.

5.6.1 Encrypting a Message

Before encryption can be done the recipient must be set using the command:

RECIPIENT userID

Set the recipient for the encryption. userID should be the internal representation of the
key; the server may accept any other way of specification. If this is a valid and trusted
recipient the server does respond with OK, otherwise the return is an ERR with the reason
why the recipient cannot be used, the encryption will then not be done for this recipient.
If the policy is not to encrypt at all if not all recipients are valid, the client has to take care
of this. All RECIPIENT commands are cumulative until a RESET or an successful ENCRYPT
command.

INPUT FD[=n] [--armor|--base64|--binary]

Set the file descriptor for the message to be encrypted to n. Obviously the pipe must
be open at that point, the server establishes its own end. If the server returns an error
the client should consider this session failed. If n is not given, this commands uses the last
file descriptor passed to the application. See section “the assuan sendfd function” in the
Libassuan manual, on how to do descriptor passing.

The --armor option may be used to advise the server that the input data is in PEM

format, --base64 advises that a raw base-64 encoding is used, --binary advises of raw
binary input (BER). If none of these options is used, the server tries to figure out the used
encoding, but this may not always be correct.

OUTPUT FD[=n] [--armor|--base64]

Set the file descriptor to be used for the output (i.e. the encrypted message). Obviously
the pipe must be open at that point, the server establishes its own end. If the server returns
an error the client should consider this session failed.

The option ‘--armor’ encodes the output in PEM format, the ‘--base64’ option applies
just a base-64 encoding. No option creates binary output (BER).

The actual encryption is done using the command

ENCRYPT

It takes the plaintext from the INPUT command, writes to the ciphertext to the file
descriptor set with the OUTPUT command, take the recipients from all the recipients set
so far. If this command fails the clients should try to delete all output currently done or

124 Using the GNU Privacy Guard

otherwise mark it as invalid. GPGSM does ensure that there will not be any security problem
with leftover data on the output in this case.

This command should in general not fail, as all necessary checks have been done while
setting the recipients. The input and output pipes are closed.

5.6.2 Decrypting a message

Input and output FDs are set the same way as in encryption, but INPUT refers to the cipher-
text and OUTPUT to the plaintext. There is no need to set recipients. GPGSM automatically
strips any S/MIME headers from the input, so it is valid to pass an entire MIME part to
the INPUT pipe.

The decryption is done by using the command

DECRYPT

It performs the decrypt operation after doing some check on the internal state (e.g.
that all needed data has been set). Because it utilizes the GPG-Agent for the session key
decryption, there is no need to ask the client for a protecting passphrase - GpgAgent takes
care of this by requesting this from the user.

5.6.3 Signing a Message

Signing is usually done with these commands:

INPUT FD[=n] [--armor|--base64|--binary]

This tells GPGSM to read the data to sign from file descriptor n.

OUTPUT FD[=m] [--armor|--base64]

Write the output to file descriptor m. If a detached signature is requested, only the
signature is written.

SIGN [--detached]

Sign the data set with the INPUT command and write it to the sink set by OUTPUT. With
--detached, a detached signature is created (surprise).

The key used for signing is the default one or the one specified in the configuration file.
To get finer control over the keys, it is possible to use the command

SIGNER userID

to set the signer’s key. userID should be the internal representation of the key; the server
may accept any other way of specification. If this is a valid and trusted recipient the server
does respond with OK, otherwise the return is an ERR with the reason why the key cannot
be used, the signature will then not be created using this key. If the policy is not to sign
at all if not all keys are valid, the client has to take care of this. All SIGNER commands are
cumulative until a RESET is done. Note that a SIGN does not reset this list of signers which
is in contrast to the RECIPIENT command.

5.6.4 Verifying a Message

To verify a message the command:

VERIFY

is used. It does a verify operation on the message send to the input FD. The result is
written out using status lines. If an output FD was given, the signed text will be written

Chapter 5: Invoking GPGSM 125

to that. If the signature is a detached one, the server will inquire about the signed material
and the client must provide it.

5.6.5 Generating a Key

This is used to generate a new keypair, store the secret part in the PSE and the public key
in the key database. We will probably add optional commands to allow the client to select
whether a hardware token is used to store the key. Configuration options to GPGSM can be
used to restrict the use of this command.

GENKEY

GPGSM checks whether this command is allowed and then does an INQUIRY to get the
key parameters, the client should then send the key parameters in the native format:

S: INQUIRE KEY_PARAM native

C: D foo:fgfgfg

C: D bar

C: END

Please note that the server may send Status info lines while reading the data lines from
the client. After this the key generation takes place and the server eventually does send an
ERR or OK response. Status lines may be issued as a progress indicator.

5.6.6 List available keys

To list the keys in the internal database or using an external key provider, the command:

LISTKEYS pattern

is used. To allow multiple patterns (which are ORed during the search) quoting is
required: Spaces are to be translated into "+" or into "%20"; in turn this requires that the
usual escape quoting rules are done.

LISTSECRETKEYS pattern

Lists only the keys where a secret key is available.

The list commands are affected by the option

OPTION list-mode=mode

where mode may be:

0 Use default (which is usually the same as 1).

1 List only the internal keys.

2 List only the external keys.

3 List internal and external keys.

Note that options are valid for the entire session.

5.6.7 Export certificates

To export certificate from the internal key database the command:

EXPORT [--data [--armor] [--base64]] [--] pattern

is used. To allow multiple patterns (which are ORed) quoting is required: Spaces are to
be translated into "+" or into "%20"; in turn this requires that the usual escape quoting
rules are done.

126 Using the GNU Privacy Guard

If the ‘--data’ option has not been given, the format of the output depends on what
was set with the OUTPUT command. When using PEM encoding a few informational lines
are prepended.

If the ‘--data’ has been given, a target set via OUTPUT is ignored and the data is returned
inline using standard D-lines. This avoids the need for an extra file descriptor. In this case
the options ‘--armor’ and ‘--base64’ may be used in the same way as with the OUTPUT

command.

5.6.8 Import certificates

To import certificates into the internal key database, the command

IMPORT [--re-import]

is used. The data is expected on the file descriptor set with the INPUT command. Certain
checks are performed on the certificate. Note that the code will also handle PKCS#12 files
and import private keys; a helper program is used for that.

With the option ‘--re-import’ the input data is expected to a be a linefeed separated
list of fingerprints. The command will re-import the corresponding certificates; that is they
are made permanent by removing their ephemeral flag.

5.6.9 Delete certificates

To delete a certificate the command

DELKEYS pattern

is used. To allow multiple patterns (which are ORed) quoting is required: Spaces are to
be translated into "+" or into "%20"; in turn this requires that the usual escape quoting
rules are done.

The certificates must be specified unambiguously otherwise an error is returned.

5.6.10 Retrieve an audit log

This command is used to retrieve an audit log.

GETAUDITLOG [--data] [--html]

If ‘--data’ is used, the audit log is send using D-lines instead of being sent to the file
descriptor given by an OUTPUT command. If ‘--html’ is used, the output is formatted as an
XHTML block. This is designed to be incorporated into a HTML document.

5.6.11 Return information about the process

This is a multipurpose function to return a variety of information.

GETINFO what

The value of what specifies the kind of information returned:

version Return the version of the program.

pid Return the process id of the process.

agent-check

Return OK if the agent is running.

Chapter 5: Invoking GPGSM 127

cmd_has_option cmd opt

Return OK if the command cmd implements the option opt. The leading two
dashes usually used with opt shall not be given.

offline Return OK if the connection is in offline mode. This may be either
due to a OPTION offline=1 or due to gpgsm being started with option
‘--disable-dirmngr’.

always-trust

Returns OK of the connection is in always-trust mode. That is either
‘--always-trust’ or ‘GPGSM OPTION always-trust’ are active.

5.6.12 Session options

The standard Assuan option handler supports these options.

OPTION name[=value]

These names are recognized:

putenv Change the session’s environment to be passed via gpg-agent to Pinentry. value
is a string of the form <KEY>[=[<STRING>]]. If only <KEY> is given the envi-
ronment variable <KEY> is removed from the session environment, if <KEY>= is
given that environment variable is set to the empty string, and if <STRING> is
given it is set to that string.

display Set the session environment variable DISPLAY is set to value.

ttyname Set the session environment variable GPG_TTY is set to value.

ttytype Set the session environment variable TERM is set to value.

lc-ctype Set the session environment variable LC_CTYPE is set to value.

lc-messages

Set the session environment variable LC_MESSAGES is set to value.

xauthority

Set the session environment variable XAUTHORITY is set to value.

pinentry-user-data

Set the session environment variable PINENTRY_USER_DATA is set to value.

include-certs

This option overrides the command line option ‘--include-certs’. A value of
-2 includes all certificates except for the root certificate, -1 includes all certifi-
cates, 0 does not include any certificates, 1 includes only the signers certificate
and all other positive values include up to value certificates starting with the
signer cert.

list-mode

See [gpgsm-cmd listkeys], page 125.

list-to-output

If value is true the output of the list commands (see [gpgsm-cmd listkeys],
page 125) is written to the file descriptor set with the last OUTPUT command.
If value is false the output is written via data lines; this is the default.

128 Using the GNU Privacy Guard

with-validation

If value is true for each listed certificate the validation status is printed. This
may result in the download of a CRL or the user being asked about the trust-
worthiness of a root certificate. The default is given by a command line option
(see [gpgsm-option –with-validation], page 114).

with-secret

If value is true certificates with a corresponding private key are marked by the
list commands.

validation-model

This option overrides the command line option ‘validation-model’ for the
session. (See [gpgsm-option –validation-model], page 112.)

with-key-data

This option globally enables the command line option ‘--with-key-data’. (See
[gpgsm-option –with-key-data], page 114.)

enable-audit-log

If value is true data to write an audit log is gathered. (See [gpgsm-cmd getau-
ditlog], page 126.)

allow-pinentry-notify

If this option is used notifications about the launch of a Pinentry are passed
back to the client.

with-ephemeral-keys

If value is true ephemeral certificates are included in the output of the list
commands.

no-encrypt-to

If this option is used all keys set by the command line option ‘--encrypt-to’
are ignored.

offline If value is true or value is not given all network access is disabled for this session.
This is the same as the command line option ‘--disable-dirmngr’.

always-trust

If value is true or value is not given encryption to the specified certificates is
forced without any validation of the certificate chain. The only requirement
is that the certificates are capable of encryption. If set to false the standard
behaviour is re-established. This option is cleared by a RESET and after each
encrypt operation. Note that this option is ignored if ‘--always-trust’ or
‘--require-compliance’ are used.

input-size-hint

This is the same as the ‘--input-size-hint’ command line option.

Chapter 6: Invoking the SCDAEMON 129

6 Invoking the SCDAEMON

The scdaemon is a daemon to manage smartcards. It is usually invoked by gpg-agent and
in general not used directly.

See [Option Index], page 225, for an index to scdaemon’s commands and options.

6.1 Commands

Commands are not distinguished from options except for the fact that only one command
is allowed.

--version

Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help, -h

Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.

--dump-options

Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

--server Run in server mode and wait for commands on the stdin. The default mode
is to create a socket and listen for commands there.

--multi-server

Run in server mode and wait for commands on the stdin as well as on an
additional Unix Domain socket. The server command GETINFO may be used to
get the name of that extra socket.

--daemon Run the program in the background. This option is required to prevent it from
being accidentally running in the background.

6.2 Option Summary

--options file

Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘scdaemon.conf’ and expected in
the ‘.gnupg’ directory directly below the home directory of the user.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

-v

130 Using the GNU Privacy Guard

--verbose

Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to gpgsm, such as ‘-vv’.

--debug-level level

Select the debug level for investigating problems. level may be a numeric value
or a keyword:

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

advanced More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

Note: All debugging options are subject to change and thus should
not be used by any application program. As the name says, they
are only used as helpers to debug problems.

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g.
0x0042) or as a comma separated list of flag names. To get a list of all supported
flags the single word "help" can be used. This option is only useful for debugging
and the behavior may change at any time without notice.

--debug-all

Same as --debug=0xffffffff

--debug-wait n

When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

--debug-ccid-driver

Enable debug output from the included CCID driver for smartcards. Using this
option twice will also enable some tracing of the T=1 protocol. Note that this
option may reveal sensitive data.

--debug-disable-ticker

This option disables all ticker functions like checking for card insertions.

--debug-allow-core-dump

For security reasons we won’t create a core dump when the process aborts. For
debugging purposes it is sometimes better to allow core dump. This option

Chapter 6: Invoking the SCDAEMON 131

enables it and also changes the working directory to ‘/tmp’ when running in
‘--server’ mode.

--debug-log-tid

This option appends a thread ID to the PID in the log output.

--debug-assuan-log-cats cats

Changes the active Libassuan logging categories to cats. The value for cats
is an unsigned integer given in usual C-Syntax. A value of 0 switches to a
default category. If this option is not used the categories are taken from the
environment variable ASSUAN_DEBUG. Note that this option has only an effect
if the Assuan debug flag has also been with the option ‘--debug’. For a list of
categories see the Libassuan manual.

--no-detach

Don’t detach the process from the console. This is mainly useful for debugging.

--listen-backlog n

Set the size of the queue for pending connections. The default is 64. This
option has an effect only if ‘--multi-server’ is also used.

--log-file file

Append all logging output to file. This is very helpful in seeing what the agent
actually does. Use ‘socket://’ to log to socket.

--pcsc-shared

Use shared mode to access the card via PC/SC. This is a somewhat dangerous
option because Scdaemon assumes exclusive access to the card and for example
caches certain information from the card. Use this option only if you know
what you are doing.

--pcsc-driver library

Use library to access the smartcard reader. The current default on Unix is
‘libpcsclite.so’ and on Windows ‘winscard.dll’. Instead of using this op-
tion you might also want to install a symbolic link to the default file name (e.g.
from ‘libpcsclite.so.1’). A Unicode file name may not be used on Windows.

--disable-ccid

The integrated CCID driver for CCID compliant devices can be available when
libusb was detected at build time, and it is used to access the smartcard reader.
If access via PC/SC driver is needed, please configure this option to disable
CCID driver support (if any). In GnuPG 2.2, there was a fallback mechanism
from CCID driver to PC/SC driver. The fallback mechanism worked, because
scdaemon in GnuPG 2.2 only supported a single token/reader. To support of
multiple tokens/readers at the same time, fallback mechanism was removed.

--reader-port number_or_string

This option may be used to specify the port of the card terminal. A value of 0
refers to the first serial device; add 32768 to access USB devices. The default
is 32768 (first USB device). PC/SC or CCID readers might need a string here;
run the program in verbose mode to get a list of available readers. The default
is then the first reader found.

132 Using the GNU Privacy Guard

To get a list of available CCID readers you may use this command:� �
echo scd getinfo reader_list \

| gpg-connect-agent --decode | awk ’/^D/ {print $2}’
 	
--card-timeout n

This option is deprecated. In GnuPG 2.0, it used to be used for DISCONNECT
command to control timing issue. Since DISCONNECT command works syn-
chronously, it has no effect.

--enable-pinpad-varlen

Please specify this option when the card reader supports variable length in-
put for pinpad (default is no). For known readers (listed in ccid-driver.c and
apdu.c), this option is not needed. Note that if your card reader doesn’t sup-
ports variable length input but you want to use it, you need to specify your
pinpad request on your card.

--disable-pinpad

Even if a card reader features a pinpad, do not try to use it.

--deny-admin

This option disables the use of admin class commands for card applications
where this is supported. Currently we support it for the OpenPGP card. This
option is useful to inhibit accidental access to admin class command which could
ultimately lock the card through wrong PIN numbers. Note that GnuPG ver-
sions older than 2.0.11 featured an ‘--allow-admin’ option which was required
to use such admin commands. This option has no more effect today because
the default is now to allow admin commands.

--disable-application name

This option disables the use of the card application named name. This is mainly
useful for debugging or if a application with lower priority should be used by
default.

--application-priority namelist

This option allows one to change the order in which applications of a card a tried
if no specific application was requested. namelist is a space or comma delimited
list of application names. Unknown names are simply skipped. Applications
not mentioned in the list are put in the former order at the end of the new
priority list.

To get the list of current active applications, use� �
gpg-connect-agent ’scd getinfo app_list’ /bye
 	

All the long options may also be given in the configuration file after stripping off the
two leading dashes.

6.3 Description of card applications

scdaemon supports the card applications as described below.

Chapter 6: Invoking the SCDAEMON 133

6.3.1 The OpenPGP card application “openpgp”

This application is currently only used by gpg but may in future also be useful with gpgsm.
Version 1 and version 2 of the card is supported.

The specification for this card is available at
https://gnupg.org/ftp/specs/ .

6.3.2 The Telesec NetKey card “nks”

This is the main application of the Telesec cards as available in Germany. It is a superset
of the German DINSIG card. The card is used by gpgsm.

6.3.3 The DINSIG card application “dinsig”

This is an application as described in the German draft standard DIN V 66291-1. It is
intended to be used by cards supporting the German signature law and its bylaws (SigG
and SigV).

6.3.4 The PKCS#15 card application “p15”

This is common framework for smart card applications. It is used by gpgsm.

6.3.5 The Geldkarte card application “geldkarte”

This is a simple application to display information of a German Geldkarte. The Geldkarte is
a small amount debit card application which comes with almost all German banking cards.

6.3.6 The SmartCard-HSM card application “sc-hsm”

This application adds read-only support for keys and certificates stored on a
SmartCard-HSM.

To generate keys and store certificates you may use OpenSC or the tools from Open-
SCDP.

The SmartCard-HSM cards requires a card reader that supports Extended Length AP-
DUs.

6.3.7 The Undefined card application “undefined”

This is a stub application to allow the use of the APDU command even if no supported
application is found on the card. This application is not used automatically but must be
explicitly requested using the SERIALNO command.

6.4 Configuration files

There are a few configuration files to control certain aspects of scdaemons’s operation.
Unless noted, they are expected in the current home directory (see [option –homedir],
page 4).

‘scdaemon.conf’
This is the standard configuration file read by scdaemon on startup. It may
contain any valid long option; the leading two dashes may not be entered and
the option may not be abbreviated. This default name may be changed on the
command line (see [option –options], page 4).

https://gnupg.org/ftp/specs/
http://www.smartcard-hsm.com
https://github.com/OpenSC/OpenSC/wiki/SmartCardHSM
http://www.openscdp.org
http://www.openscdp.org

134 Using the GNU Privacy Guard

‘scd-event’
If this file is present and executable, it will be called on every card reader’s
status change. An example of this script is provided with the source code
distribution. This option is deprecated in favor of the DEVINFO --watch.

‘reader_n.status’
This file is created by scdaemon to let other applications now about reader
status changes. Its use is now deprecated in favor of ‘scd-event’.

6.5 Examples

$ scdaemon --server -v

6.6 Scdaemon’s Assuan Protocol

The SC-Daemon should be started by the system to provide access to external tokens. Using
Smartcards on a multi-user system does not make much sense except for system services,
but in this case no regular user accounts are hosted on the machine.

A client connects to the SC-Daemon by connecting to the socket named
‘/usr/local/var/run/gnupg/scdaemon/socket’, configuration information is read from
/usr/local/etc/gnupg/scdaemon.conf

Each connection acts as one session, SC-Daemon takes care of synchronizing access to a
token between sessions.

6.6.1 Return the serial number

This command should be used to check for the presence of a card. It is special in that it can
be used to reset the card. Most other commands will return an error when a card change
has been detected and the use of this function is therefore required.

Background: We want to keep the client clear of handling card changes between oper-
ations; i.e. the client can assume that all operations are done on the same card unless he
call this function.

SERIALNO

Return the serial number of the card using a status response like:

S SERIALNO D27600000000000000000000

The serial number is the hex encoded value identified by the 0x5A tag in the GDO file
(FIX=0x2F02).

6.6.2 Read all useful information from the card

LEARN [--force]

Learn all useful information of the currently inserted card. When used without the
‘--force’ option, the command might do an INQUIRE like this:

INQUIRE KNOWNCARDP <hexstring_with_serialNumber>

The client should just send an END if the processing should go on or a CANCEL to force
the function to terminate with a cancel error message. The response of this command is a
list of status lines formatted as this:

Chapter 6: Invoking the SCDAEMON 135

S KEYPAIRINFO hexstring_with_keygrip hexstring_with_id

If there is no certificate yet stored on the card a single "X" is returned in
hexstring with keygrip.

6.6.3 Return a certificate

READCERT hexified_certid|keyid

This function is used to read a certificate identified by hexified certid from the card.
With OpenPGP cards the keyid OpenPGP.3 may be used to read the certificate of version
2 cards.

6.6.4 Return a public key

READKEY hexified_certid

Return the public key for the given cert or key ID as an standard S-Expression.

6.6.5 Signing data with a Smartcard

To sign some data the caller should use the command

SETDATA hexstring

to tell scdaemon about the data to be signed. The data must be given in hex notation.
The actual signing is done using the command

PKSIGN keyid

where keyid is the hexified ID of the key to be used. The key id may have been retrieved
using the command LEARN. If another hash algorithm than SHA-1 is used, that algorithm
may be given like:

PKSIGN --hash=algoname keyid

With algoname are one of sha1, rmd160 or md5.

6.6.6 Decrypting data with a Smartcard

To decrypt some data the caller should use the command

SETDATA hexstring

to tell scdaemon about the data to be decrypted. The data must be given in hex notation.
The actual decryption is then done using the command

PKDECRYPT keyid

where keyid is the hexified ID of the key to be used.

If the card is aware of the apdding format a status line with padding information is send
before the plaintext data. The key for this status line is PADDING with the only defined
value being 0 and meaning padding has been removed.

6.6.7 Read an attribute’s value

TO BE WRITTEN.

6.6.8 Update an attribute’s value

TO BE WRITTEN.

136 Using the GNU Privacy Guard

6.6.9 Write a key to a card

WRITEKEY [--force] keyid

This command is used to store a secret key on a smartcard. The allowed keyids depend
on the currently selected smartcard application. The actual keydata is requested using the
inquiry KEYDATA and need to be provided without any protection. With ‘--force’ set an
existing key under this keyid will get overwritten. The key data is expected to be the usual
canonical encoded S-expression.

A PIN will be requested in most cases. This however depends on the actual card appli-
cation.

6.6.10 Generate a new key on-card

TO BE WRITTEN.

6.6.11 Return random bytes generated on-card

TO BE WRITTEN.

6.6.12 Change PINs

PASSWD [--reset] [--nullpin] chvno

Change the PIN or reset the retry counter of the card holder verification vector number
chvno. The option ‘--nullpin’ is used to initialize the PIN of TCOS cards (6 byte NullPIN
only).

6.6.13 Perform a VERIFY operation

CHECKPIN idstr

Perform a VERIFY operation without doing anything else. This may be used to initialize
a the PIN cache earlier to long lasting operations. Its use is highly application dependent:

OpenPGP

Perform a simple verify operation for CHV1 and CHV2, so that further oper-
ations won’t ask for CHV2 and it is possible to do a cheap check on the PIN:
If there is something wrong with the PIN entry system, only the regular CHV
will get blocked and not the dangerous CHV3. idstr is the usual card’s serial
number in hex notation; an optional fingerprint part will get ignored.

There is however a special mode if idstr is suffixed with the literal string [CHV3]:
In this case the Admin PIN is checked if and only if the retry counter is still at
3.

6.6.14 Perform a RESTART operation

RESTART

Restart the current connection; this is a kind of warm reset. It deletes the context used
by this connection but does not actually reset the card.

This is used by gpg-agent to reuse a primary pipe connection and may be used by clients
to backup from a conflict in the serial command; i.e. to select another application.

Chapter 6: Invoking the SCDAEMON 137

6.6.15 Send a verbatim APDU to the card

APDU [--atr] [--more] [--exlen[=n]] [hexstring]

Send an APDU to the current reader. This command bypasses the high level functions
and sends the data directly to the card. hexstring is expected to be a proper APDU.
If hexstring is not given no commands are send to the card; However the command will
implicitly check whether the card is ready for use.

Using the option --atr returns the ATR of the card as a status message before any data
like this:

S CARD-ATR 3BFA1300FF813180450031C173C00100009000B1

Using the option --more handles the card status word MORE DATA (61xx) and con-
catenate all responses to one block.

Using the option --exlen the returned APDU may use extended length up to N bytes.
If N is not given a default value is used (currently 4096).

138 Using the GNU Privacy Guard

Chapter 7: How to Specify a User Id 139

7 How to Specify a User Id

There are different ways to specify a user ID to GnuPG. Some of them are only valid for
gpg others are only good for gpgsm. Here is the entire list of ways to specify a key:

• By key Id. This format is deduced from the length of the string and its content or 0x
prefix. The key Id of an X.509 certificate are the low 64 bits of its SHA-1 fingerprint.
The use of key Ids is just a shortcut, for all automated processing the fingerprint should
be used.

When using gpg an exclamation mark (!) may be appended to force using the specified
primary or secondary key and not to try and calculate which primary or secondary key
to use.

The last four lines of the example give the key ID in their long form as internally used by
the OpenPGP protocol. You can see the long key ID using the option ‘--with-colons’.� �
234567C4

0F34E556E

01347A56A

0xAB123456

234AABBCC34567C4

0F323456784E56EAB

01AB3FED1347A5612

0x234AABBCC34567C4
 	
• By fingerprint. This format is deduced from the length of the string and its content or

the 0x prefix. Note, that only the 20 byte version fingerprint is available with gpgsm

(i.e. the SHA-1 hash of the certificate).

When using gpg an exclamation mark (!) may be appended to force using the specified
primary or secondary key and not to try and calculate which primary or secondary key
to use.

The best way to specify a key Id is by using the fingerprint. This avoids any ambiguities
in case that there are duplicated key IDs.� �
1234343434343434C434343434343434

123434343434343C3434343434343734349A3434

0E12343434343434343434EAB3484343434343434

0xE12343434343434343434EAB3484343434343434
 	
gpgsm also accepts colons between each pair of hexadecimal digits because this is the
de-facto standard on how to present X.509 fingerprints. gpg also allows the use of the
space separated SHA-1 fingerprint as printed by the key listing commands.

• By exact match on OpenPGP user ID. This is denoted by a leading equal sign. It does
not make sense for X.509 certificates.� �
=Heinrich Heine <heinrichh@uni-duesseldorf.de>
 	

140 Using the GNU Privacy Guard

• By exact match on an email address. This is indicated by enclosing the email address
in the usual way with left and right angles.� �
<heinrichh@uni-duesseldorf.de>
 	

• By partial match on an email address. This is indicated by prefixing the search string
with an @. This uses a substring search but considers only the mail address (i.e. inside
the angle brackets).� �
@heinrichh
 	

• By exact match on the subject’s DN. This is indicated by a leading slash, directly
followed by the RFC-2253 encoded DN of the subject. Note that you can’t use the
string printed by gpgsm --list-keys because that one has been reordered and modified
for better readability; use ‘--with-colons’ to print the raw (but standard escaped)
RFC-2253 string.� �
/CN=Heinrich Heine,O=Poets,L=Paris,C=FR
 	

• By exact match on the issuer’s DN. This is indicated by a leading hash mark, directly
followed by a slash and then directly followed by the RFC-2253 encoded DN of the
issuer. This should return the Root cert of the issuer. See note above.� �
#/CN=Root Cert,O=Poets,L=Paris,C=FR
 	

• By exact match on serial number and issuer’s DN. This is indicated by a hash mark,
followed by the hexadecimal representation of the serial number, then followed by a
slash and the RFC-2253 encoded DN of the issuer. See note above.� �
#4F03/CN=Root Cert,O=Poets,L=Paris,C=FR
 	

• By keygrip. This is indicated by an ampersand followed by the 40 hex digits of a
keygrip. gpgsm prints the keygrip when using the command ‘--dump-cert’.� �
&D75F22C3F86E355877348498CDC92BD21010A480
 	

• By substring match. This is the default mode but applications may want to explicitly
indicate this by putting the asterisk in front. Match is not case sensitive.� �
Heine

*Heine
 	
• . and + prefixes These prefixes are reserved for looking up mails anchored at the end and

for a word search mode. They are not yet implemented and using them is undefined.

Chapter 7: How to Specify a User Id 141

Please note that we have reused the hash mark identifier which was used in old GnuPG
versions to indicate the so called local-id. It is not anymore used and there should be no
conflict when used with X.509 stuff.

Using the RFC-2253 format of DNs has the drawback that it is not possible to map them
back to the original encoding, however we don’t have to do this because our key database
stores this encoding as meta data.

142 Using the GNU Privacy Guard

Chapter 8: Trust Values 143

8 Trust Values

Trust values are used to indicate ownertrust and validity of keys and user IDs. They are
displayed with letters or strings:

-
unknown No ownertrust assigned / not yet calculated.

e
expired

Trust calculation has failed; probably due to an expired key.

q
undefined, undef

Not enough information for calculation.

n
never Never trust this key.

m
marginal Marginally trusted.

f
full Fully trusted.

u
ultimate Ultimately trusted.

r
revoked For validity only: the key or the user ID has been revoked.

?
err The program encountered an unknown trust value.

144 Using the GNU Privacy Guard

Chapter 9: Smart Card Tool 145

9 Smart Card Tool

GnuPG comes with a tool to administrate smart cards and USB tokens. This tool is an
enhanced version of the ‘--edit-key’ command available with gpg.

9.1 Administrate smart cards.

The gpg-card is used to administrate smart cards and USB tokens. It provides a superset
of features from gpg --card-edit an can be considered a frontend to scdaemon which is a
daemon started by gpg-agent to handle smart cards.

If gpg-card is invoked without commands an interactive mode is used.

If gpg-card is invoked with one or more commands the same commands as available in
the interactive mode are run from the command line. These commands need to be delimited
with a double-dash. If a double-dash or a shell specific character is required as part of a
command the entire command needs to be put in quotes. If one of those commands returns
an error the remaining commands are not anymore run unless the command was prefixed
with a single dash.

A list of commands is available by using the command help and a brief description
of each command is printed by using help CMD. See the section COMMANDS for a full
description.

See the NOTES sections for instructions pertaining to specific cards or card applications.

gpg-card understands these options:

--with-colons

This option has currently no effect.

--status-fd n

Write special status strings to the file descriptor n. This program returns only
the status messages SUCCESS or FAILURE which are helpful when the caller
uses a double fork approach and can’t easily get the return code of the process.

--verbose

Enable extra informational output.

--quiet Disable almost all informational output.

--version

Print version of the program and exit.

--help Display a brief help page and exit.

--no-autostart

Do not start the gpg-agent if it has not yet been started and its service is
required. This option is mostly useful on machines where the connection to
gpg-agent has been redirected to another machines.

--no-history

In interactive mode the command line history is usually saved and restored to
and from a file below the GnuPG home directory. This option inhibits the use
of that file.

146 Using the GNU Privacy Guard

--agent-program file

Specify the agent program to be started if none is running. The default value
is determined by running gpgconf with the option ‘--list-dirs’.

--gpg-program file

Specify a non-default gpg binary to be used by certain commands.

--gpgsm-program file

Specify a non-default gpgsm binary to be used by certain commands.

--chuid uid

Change the current user to uid which may either be a number or a name. This
can be used from the root account to run gpg-card for another user. If uid is
not the current UID a standard PATH is set and the envvar GNUPGHOME is
unset. To override the latter the option ‘--homedir’ can be used. This option
has only an effect when used on the command line. This option has currently
no effect at all on Windows.

gpg-card understands the following commands, which have options of their own. The
pseudo-option ‘--’ can be used to separate command options from arguments; if this pseudo
option is used on the command line the entire command with options and arguments must
be quoted, so that it is not mixed up with the ‘--’ as used on the command line to separate
commands. Note that a short online help is available for all commands by prefixing them
with “help”. Command completion in the interactive mode is also supported.

AUTHENTICATE [--setkey] [--raw] [< file]|key]

AUTH Authenticate to the card. Perform a mutual authentication either by reading
the key from file or by taking it from the command line as key. Without
the option ‘--raw’ the key is expected to be hex encoded. To install a new
administration key ‘--setkey’ is used; this requires a prior authentication with
the old key. This is used with PIV cards.

CAFPR [--clear] N

Change the CA fingerprint number N of an OpenPGP card. N must be in the
range 1 to 3. The option ‘--clear’ clears the specified CA fingerprint N or all
of them if N is 0 or not given.

FACTORY-RESET

Do a complete reset of some OpenPGP and PIV cards. This command deletes
all data and keys and resets the PINs to their default. Don’t worry, you need
to confirm before the command proceeds.

FETCH Retrieve a key using the URL data object of an OpenPGP card or if that is
missing using the stored fingerprint.

FORCESIG Toggle the forcesig flag of an OpenPGP card.

GENERATE [--force] [--algo=algo{+algo2}] keyref

Create a new key on a card. Use ‘--force’ to overwrite an existing key. Use
"help" for algo to get a list of known algorithms. For OpenPGP cards several
algos may be given. Note that the OpenPGP key generation is done interac-
tively unless ‘--algo’ or keyref are given.

Chapter 9: Smart Card Tool 147

KDF-SETUP

Prepare the OpenPGP card KDF feature for this card.

LANG [--clear]

Change the language info for the card. This info can be used by applications for
a personalized greeting. Up to 4 two-digit language identifiers can be entered
as a preference. The option ‘--clear’ removes all identifiers. GnuPG does not
use this info.

LIST [--cards] [--apps] [--info] [--no-key-lookup] [n] [app]

L This command reads all information from the current card and display them in
a human readable format. The first section shows generic information vaialable
for all cards. The next section shows information pertaining to keys which
depend on the actual card and application.

With n given select and list the n-th card; with app also given select that
application. To select an app on the current card use "-" for n. The serial
number of the card may be used instead of n.

The option ‘--cards’ lists the serial numbers of available cards. The option
‘--apps’ lists all card applications. The option ‘--info’ selects a card and
prints its serial number. The option ‘--no-key-lookup’ suppresses the listing
of matching OpenPGP or X.509 keys.

LOGIN [--clear] [< file]

Set the login data object of OpenPGP cards. If file is given the data is is read
from that file. This allows one to store binary data in the login field. The
option ‘--clear’ deletes the login data object.

NAME [--clear]

Set the name field of an OpenPGP card. With option ‘--clear’ the stored
name is cleared off the card.

PASSWD [--reset|--nullpin] [pinref]

Change or unblock the PINs. Note that in interactive mode and without a
pinref a menu is presented for certain cards." In non-interactive mode and
without a pinref a default value i used for these cards. The option ‘--reset’
is used with TCOS cards to reset the PIN using the PUK or vice versa; the
option –nullpin is used for these cards to set the initial PIN.

PRIVATEDO [--clear] n [< file]

Change the private data object n of an OpenPGP card. n must be in the range
1 to 4. If file is given the data is is read from that file. The option ‘--clear’
clears the data.

QUIT

Q Stop processing and terminate gpg-card.

READCERT [--openpgp] certref > file

Read the certificate for key certref and store it in file. With option
‘--openpgp’ an OpenPGP keyblock wrapped in a dedicated CMS content type
(OID=1.3.6.1.4.1.11591.2.3.1) is expected and extracted to file. Note that
for current OpenPGP cards a certificate may only be available at the certref
"OPENPGP.3".

148 Using the GNU Privacy Guard

RESET Send a reset to the card daemon.

SALUTATION [--clear]

SALUT Change the salutation info for the card. This info can be used by applications
for a personalized greeting. The option ‘--clear’ removes this data object.
GnuPG does not use this info.

UIF N [on|off|permanent]

Change the User Interaction Flag. That flags tells whether the confirmation
button of a token shall be used. n must in the range 1 to 3. "permanent" is
the same as "on" but the flag can’t be changed anmore.

UNBLOCK Unblock a PIN using a PUK or Reset Code. Note that OpenPGP cards prior
to version 2 can’t use this; instead the PASSWD can be used to set a new PIN.

URL [--clear]

Set the URL data object of an OpenPGP card. That data object can be used
by by gpg’s ‘--fetch’ command to retrieve the full public key. The option
‘--clear’ deletes the content of that data object.

VERIFY [chvid]

Verify the PIN identified by chvid or the default PIN.

WRITECERT certref < file

WRITECERT --openpgp certref [< file|fpr]

WRITECERT --clear certref

Write a certificate to the card under the id certref. The option ‘--clear’
removes the certificate from the card. The option ‘--openpgp’ expects an
OpenPGP keyblock and stores it encapsulated in a CMS container; the keyblock
is taken from file or directly from the OpenPGP key identified by fingerprint
fpr.

WRITEKEY [--force] keyref keygrip

Write a private key object identified by keygrip to the card under the id keyref.
Option ‘--force’ allows overwriting an existing key.

CHECKKEYS [--ondisk] [--delete-clear-copy] [--delete-protected-copy]

Print a list of keys noticed on all inserted cards. With ‘--ondisk’ only
smartcard keys with a copy on disk are listed. With ‘--delete-clear-copy’
copies of smartcard keys stored on disk without any protection will be deleted.
With ‘--delete-protected-copy’ password protected copies of smartcard
keys stored on disk will be deleted.

This command creates missing shadow keys. The delete options print the status
of the keys before they are deleted.

The format of the output is:

Serial number
A hex-string with the serial number of the card.

Type This gives the type of the card’s application. For example
"OpenPGP" or "PIV".

Keygrip A hex-string identifying a key.

Chapter 9: Smart Card Tool 149

Keyref The application slot where the key is stored on the card. For ex-
ample "OpenPGP.1"

Status The status of the key. The most common value is "shadowed"
for a key where only the public key along with the card’s serial
number is stored on the disk. The value "clear" indicates that a
copy of the card’s key is stored unprotected on disk. The value
"protected" indicated that a copy of the car’s key is stored on disk
but is protected by a password. The value "error" may also be
shown if there was a problem reading information from the card.

YUBIKEY cmd args

Various commands pertaining to Yubikey tokens with cmd being:

LIST List supported and enabled Yubikey applications.

ENABLE usb|nfc|all [otp|u2f|opgp|piv|oath|fido2|all]
DISABLE Enable or disable the specified or all applications on the given in-

terface.

The support for OpenPGP cards in gpg-card is not yet complete. For missing features,
please continue to use gpg --card-edit.

GnuPG has support for PIV cards (“Personal Identity Verification” as specified by NIST
Special Publication 800-73-4). This section describes how to initialize (personalize) a fresh
Yubikey token featuring the PIV application (requires Yubikey-5). We assume that the
credentials have not yet been changed and thus are:

Authentication key
This is a 24 byte key described by the hex string
010203040506070801020304050607080102030405060708.

PIV Application PIN
This is the string 123456.

PIN Unblocking Key
This is the string 12345678.

See the example section on how to change these defaults. For production use it is
important to use secure values for them. Note that the Authentication Key is not queried
via the usual Pinentry dialog but needs to be entered manually or read from a file. The use
of a dedicated machine to personalize tokens is strongly suggested.

To see what is on the card, the command list can be given. We will use the interactive
mode in the following (the string gpg/card> is the prompt). An example output for a fresh
card is:

gpg/card> list

Reader: 1050:0407:X:0

Card type: yubikey

Card firmware: 5.1.2

Serial number: D2760001240102010006090746250000

Application type .: OpenPGP

Version: 2.1

150 Using the GNU Privacy Guard

[...]

It can be seen by the “Application type” line that GnuPG selected the OpenPGP appli-
cation of the Yubikey. This is because GnuPG assigns the highest priority to the OpenPGP
application. To use the PIV application of the Yubikey several methods can be used:

With a Yubikey 5 or later the OpenPGP application on the Yubikey can be disabled:

gpg/card> yubikey disable all opgp

gpg/card> yubikey list

Application USB NFC

OTP yes yes

U2F yes yes

OPGP no no

PIV yes no

OATH yes yes

FIDO2 yes yes

gpg/card> reset

The reset is required so that the GnuPG system rereads the card. Note that disabled
applications keep all their data and can at any time be re-enabled (use help yubikey).

Another option, which works for all Yubikey versions, is to disable the support for
OpenPGP cards in scdaemon. This is done by adding the line

disable-application openpgp

to ‘~/.gnupg/scdaemon.conf’ and by restarting scdaemon, either by killing the process
or by using gpgconf --kill scdaemon. Finally the default order in which card applications
are tried by scdaemon can be changed. For example to prefer PIV over OpenPGP it is
sufficient to add

application-priority piv

to ‘~/.gnupg/scdaemon.conf’ and to restart scdaemon. This has an effect only on
tokens which support both, PIV and OpenPGP, but does not hamper the use of OpenPGP
only tokens.

With one of these methods employed the list command of gpg-card shows this:

gpg/card> list

Reader: 1050:0407:X:0

Card type: yubikey

Card firmware: 5.1.2

Serial number: FF020001008A77C1

Application type .: PIV

Version: 1.0

Displayed s/n: yk-9074625

PIN usage policy .: app-pin

PIN retry counter : - 3 -

PIV authentication: [none]

keyref: PIV.9A

Card authenticat. : [none]

keyref: PIV.9E

Digital signature : [none]

Chapter 9: Smart Card Tool 151

keyref: PIV.9C

Key management ...: [none]

keyref: PIV.9D

In case several tokens are plugged into the computer, gpg-card will show only one. To
show another token the number of the token (0, 1, 2, ...) can be given as an argument to
the list command. The command list --cards prints a list of all inserted tokens.

Note that the “Displayed s/n” is printed on the token and also shown in Pinentry
prompts asking for the PIN. The four standard key slots are always shown, if other key
slots are initialized they are shown as well. The PIV authentication key (internal reference
PIV.9A) is used to authenticate the card and the card holder. The use of the associated
private key is protected by the Application PIN which needs to be provided once and the
key can the be used until the card is reset or removed from the reader or USB port. GnuPG
uses this key with its Secure Shell support. The Card authentication key (PIV.9E) is also
known as the CAK and used to support physical access applications. The private key is not
protected by a PIN and can thus immediately be used. The Digital signature key (PIV.9C)
is used to digitally sign documents. The use of the associated private key is protected
by the Application PIN which needs to be provided for each signing operation. The Key
management key (PIV.9D) is used for encryption. The use of the associated private key is
protected by the Application PIN which needs to be provided only once so that decryption
operations can then be done until the card is reset or removed from the reader or USB port.

We now generate three of the four keys. Note that GnuPG does currently not use the
the Card authentication key; however, that key is mandatory by the PIV standard and thus
we create it too. Key generation requires that we authenticate to the card. This can be
done either on the command line (which would reveal the key):

gpg/card> auth 010203040506070801020304050607080102030405060708

or by reading the key from a file. That file needs to consist of one LF terminated line
with the hex encoded key (as above):

gpg/card> auth < myauth.key

As usual ‘help auth’ gives help for this command. An error message is printed if a
non-matching key is used. The authentication is valid until a reset of the card or until the
card is removed from the reader or the USB port. Note that that in non-interactive mode
the ‘<’ needs to be quoted so that the shell does not interpret it as a its own redirection
symbol.

Here are the actual commands to generate the keys:

gpg/card> generate --algo=nistp384 PIV.9A

PIV card no. yk-9074625 detected

gpg/card> generate --algo=nistp256 PIV.9E

PIV card no. yk-9074625 detected

gpg/card> generate --algo=rsa2048 PIV.9C

PIV card no. yk-9074625 detected

If a key has already been created for one of the slots an error will be printed; to create
a new key anyway the option ‘--force’ can be used. Note that only the private and public
keys have been created but no certificates are stored in the key slots. In fact, GnuPG uses
its own non-standard method to store just the public key in place of the the certificate.
Other application will not be able to make use these keys until gpgsm or another tool has

152 Using the GNU Privacy Guard

been used to create and store the respective certificates. Let us see what the list command
now shows:

gpg/card> list

Reader: 1050:0407:X:0

Card type: yubikey

Card firmware: 5.1.2

Serial number: FF020001008A77C1

Application type .: PIV

Version: 1.0

Displayed s/n: yk-9074625

PIN usage policy .: app-pin

PIN retry counter : - 3 -

PIV authentication: 213D1825FDE0F8240CB4E4229F01AF90AC658C2E

keyref: PIV.9A (auth)

algorithm ..: nistp384

Card authenticat. : 7A53E6CFFE7220A0E646B4632EE29E5A7104499C

keyref: PIV.9E (auth)

algorithm ..: nistp256

Digital signature : 32A6C6FAFCB8421878608AAB452D5470DD3223ED

keyref: PIV.9C (sign,cert)

algorithm ..: rsa2048

Key management ...: [none]

keyref: PIV.9D

The primary information for each key is the keygrip, a 40 byte hex-string identifying
the key. This keygrip is a unique identifier for the specific parameters of a key. It is used
by gpg-agent and other parts of GnuPG to associate a private key to its protocol specific
certificate format (X.509, OpenPGP, or SecureShell). Below the keygrip the key reference
along with the key usage capabilities are show. Finally the algorithm is printed in the
format used by gpg. At that point no other information is shown because for these new
keys gpg won’t be able to find matching certificates.

Although we could have created the Key management key also with the generate com-
mand, we will create that key off-card so that a backup exists. To accomplish this a key
needs to be created with either gpg or gpgsm or imported in one of these tools. In our
example we create a self-signed X.509 certificate (exit the gpg-card tool, first):

$ gpgsm --gen-key -o encr.crt

(1) RSA

(2) Existing key

(3) Existing key from card

Your selection? 1

What keysize do you want? (3072) 2048

Requested keysize is 2048 bits

Possible actions for a RSA key:

(1) sign, encrypt

(2) sign

(3) encrypt

Your selection? 3

Chapter 9: Smart Card Tool 153

Enter the X.509 subject name: CN=Encryption key for yk-9074625,O=example,C=DE

Enter email addresses (end with an empty line):

> otto@example.net

>

Enter DNS names (optional; end with an empty line):

>

Enter URIs (optional; end with an empty line):

>

Create self-signed certificate? (y/N) y

These parameters are used:

Key-Type: RSA

Key-Length: 2048

Key-Usage: encrypt

Serial: random

Name-DN: CN=Encryption key for yk-9074625,O=example,C=DE

Name-Email: otto@example.net

Proceed with creation? (y/N)

Now creating self-signed certificate. This may take a while ...

gpgsm: about to sign the certificate for key: &34798AAFE0A7565088101CC4AE31C5C8C74461CB

gpgsm: certificate created

Ready.

$ gpgsm --import encr.crt

gpgsm: certificate imported

gpgsm: total number processed: 1

gpgsm: imported: 1

Note the last step which imported the created certificate. If you you instead created a
certificate signing request (CSR) instead of a self-signed certificate and sent this off to a CA
you would do the same import step with the certificate received from the CA. Take note of
the keygrip (prefixed with an ampersand) as shown during the certificate creation or listed
it again using ‘gpgsm --with-keygrip -k otto@example.net’. Now to move the key and
certificate to the card start gpg-card again and enter:

gpg/card> writekey PIV.9D 34798AAFE0A7565088101CC4AE31C5C8C74461CB

gpg/card> writecert PIV.9D < encr.crt

If you entered a passphrase to protect the private key, you will be asked for it via the
Pinentry prompt. On success the key and the certificate has been written to the card and
a list command shows:

[...]

Key management ...: 34798AAFE0A7565088101CC4AE31C5C8C74461CB

keyref: PIV.9D (encr)

algorithm ..: rsa2048

used for ...: X.509

user id ..: CN=Encryption key for yk-9074625,O=example,C=DE

user id ..: <otto@example.net>

In case the same key (identified by the keygrip) has been used for several certificates you
will see several “used for” parts. With this the encryption key is now fully functional and

154 Using the GNU Privacy Guard

can be used to decrypt messages encrypted to this certificate. Take care: the original
key is still stored on-disk and should be moved to a backup medium. This can simply
be done by copying the file ‘34798AAFE0A7565088101CC4AE31C5C8C74461CB.key’ from the
directory ‘~/.gnupg/private-keys-v1.d/’ to the backup medium and deleting the file at
its original place.

The final example is to create a self-signed certificate for digital signatures. Leave gpg-
card using quit or by pressing Control-D and use gpgsm:

$ gpgsm --learn

$ gpgsm --gen-key -o sign.crt

Please select what kind of key you want:

(1) RSA

(2) Existing key

(3) Existing key from card

Your selection? 3

Serial number of the card: FF020001008A77C1

Available keys:

(1) 213D1825FDE0F8240CB4E4229F01AF90AC658C2E PIV.9A nistp384

(2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256

(3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048

(4) 34798AAFE0A7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048

Your selection? 3

Possible actions for a RSA key:

(1) sign, encrypt

(2) sign

(3) encrypt

Your selection? 2

Enter the X.509 subject name: CN=Signing key for yk-9074625,O=example,C=DE

Enter email addresses (end with an empty line):

> otto@example.net

>

Enter DNS names (optional; end with an empty line):

>

Enter URIs (optional; end with an empty line):

>

Create self-signed certificate? (y/N)

These parameters are used:

Key-Type: card:PIV.9C

Key-Length: 1024

Key-Usage: sign

Serial: random

Name-DN: CN=Signing key for yk-9074625,O=example,C=DE

Name-Email: otto@example.net

Proceed with creation? (y/N) y

Now creating self-signed certificate. This may take a while ...

gpgsm: about to sign the certificate for key: &32A6C6FAFCB8421878608AAB452D5470DD3223ED

Chapter 9: Smart Card Tool 155

gpgsm: certificate created

Ready.

$ gpgsm --import sign.crt

gpgsm: certificate imported

gpgsm: total number processed: 1

gpgsm: imported: 1

The use of ‘gpgsm --learn’ is currently necessary so that gpg-agent knows what keys
are available on the card. The need for this command will eventually be removed. The
remaining commands are similar to the creation of an on-disk key. However, here we
select the ‘Digital signature’ key. During the creation process you will be asked for the
Application PIN of the card. The final step is to write the certificate to the card using
gpg-card:

gpg/card> writecert PIV.9C < sign.crt

By running list again we will see the fully initialized card:

Reader: 1050:0407:X:0

Card type: yubikey

Card firmware: 5.1.2

Serial number: FF020001008A77C1

Application type .: PIV

Version: 1.0

Displayed s/n: yk-9074625

PIN usage policy .: app-pin

PIN retry counter : - [verified] -

PIV authentication: 213D1825FDE0F8240CB4E4229F01AF90AC658C2E

keyref: PIV.9A (auth)

algorithm ..: nistp384

Card authenticat. : 7A53E6CFFE7220A0E646B4632EE29E5A7104499C

keyref: PIV.9E (auth)

algorithm ..: nistp256

Digital signature : 32A6C6FAFCB8421878608AAB452D5470DD3223ED

keyref: PIV.9C (sign,cert)

algorithm ..: rsa2048

used for ...: X.509

user id ..: CN=Signing key for yk-9074625,O=example,C=DE

user id ..: <otto@example.net>

Key management ...: 34798AAFE0A7565088101CC4AE31C5C8C74461CB

keyref: PIV.9D (encr)

algorithm ..: rsa2048

used for ...: X.509

user id ..: CN=Encryption key for yk-9074625,O=example,C=DE

user id ..: <otto@example.net>

It is now possible to sign and to encrypt with this card using gpgsm and to use the ‘PIV
authentication’ key with ssh:

$ ssh-add -l

384 SHA256:0qnJ0Y0ehWxKcx2frLfEljf6GCdlO55OZed5HqGHsaU cardno:yk-9074625 (ECDSA)

156 Using the GNU Privacy Guard

As usual use ssh-add with the uppercase ‘-L’ to list the public ssh key. To use the
certificates with Thunderbird or Mozilla, please consult the Scute manual for details.

If you want to use the same PIV keys also for OpenPGP (for example on a Yubikey to
avoid switching between OpenPGP and PIV), this is also possible:

$ gpgsm --learn

$ gpg --full-gen-key

Please select what kind of key you want:

(1) RSA and RSA (default)

(2) DSA and Elgamal

(3) DSA (sign only)

(4) RSA (sign only)

(14) Existing key from card

Your selection? 14

Serial number of the card: FF020001008A77C1

Available keys:

(1) 213D1825FDE0F8240CB4E4229F01AF90AC658C2E PIV.9A nistp384 (auth)

(2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256 (auth)

(3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048 (cert,sign)

(4) 34798AAFE0A7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048 (encr)

Your selection? 3

Please specify how long the key should be valid.

0 = key does not expire

<n> = key expires in n days

<n>w = key expires in n weeks

<n>m = key expires in n months

<n>y = key expires in n years

Key is valid for? (0)

Key does not expire at all

Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name:

Email address: otto@example.net

Comment:

You selected this USER-ID:

"otto@example.net"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

gpg: key C3AFA9ED971BB365 marked as ultimately trusted

gpg: revocation certificate stored as ’[...]D971BB365.rev’

public and secret key created and signed.

Note that this key cannot be used for encryption. You may want to use

the command "--edit-key" to generate a subkey for this purpose.

pub rsa2048 2019-04-04 [SC]

Chapter 9: Smart Card Tool 157

7F899AE2FB73159DD68A1B20C3AFA9ED971BB365

uid otto@example.net

Note that you will be asked two times to enter the PIN of your PIV card. If you run
gpg in ‘--expert’ mode you will also ge given the option to change the usage flags of the
key. The next typescript shows how to add the encryption subkey:

$ gpg --edit-key 7F899AE2FB73159DD68A1B20C3AFA9ED971BB365

Secret key is available.

sec rsa2048/C3AFA9ED971BB365

created: 2019-04-04 expires: never usage: SC

card-no: FF020001008A77C1

trust: ultimate validity: ultimate

[ultimate] (1). otto@example.net

gpg> addkey

Secret parts of primary key are stored on-card.

Please select what kind of key you want:

(3) DSA (sign only)

(4) RSA (sign only)

(5) Elgamal (encrypt only)

(6) RSA (encrypt only)

(14) Existing key from card

Your selection? 14

Serial number of the card: FF020001008A77C1

Available keys:

(1) 213D1825FDE0F8240CB4E4229F01AF90AC658C2E PIV.9A nistp384 (auth)

(2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256 (auth)

(3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048 (cert,sign)

(4) 34798AAFE0A7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048 (encr)

Your selection? 4

Please specify how long the key should be valid.

0 = key does not expire

<n> = key expires in n days

<n>w = key expires in n weeks

<n>m = key expires in n months

<n>y = key expires in n years

Key is valid for? (0)

Key does not expire at all

Is this correct? (y/N) y

Really create? (y/N) y

sec rsa2048/C3AFA9ED971BB365

created: 2019-04-04 expires: never usage: SC

card-no: FF020001008A77C1

trust: ultimate validity: ultimate

ssb rsa2048/7067860A98FCE6E1

created: 2019-04-04 expires: never usage: E

158 Using the GNU Privacy Guard

card-no: FF020001008A77C1

[ultimate] (1). otto@example.net

gpg> save

Now you can use your PIV card also with gpg.

Chapter 10: Helper Tools 159

10 Helper Tools

GnuPG comes with a couple of smaller tools:

10.1 Read logs from a socket

Most of the main utilities are able to write their log files to a Unix Domain socket if
configured that way. watchgnupg is a simple listener for such a socket. It ameliorates the
output with a time stamp and makes sure that long lines are not interspersed with log
output from other utilities. This tool is not available for Windows.

watchgnupg is commonly invoked as

watchgnupg

which is a shorthand for

watchgnupg --force $(gpgconf --list-dirs socketdir)/S.log

To watch GnuPG running with a different home directory, use

watchgnupg --homedir DIR

This starts it on the current terminal for listening on the standard logging socket (this is
commonly ‘/var/run/user/UID/gnupg/S.log’ or if no such user directory hierarchy exists
‘~/.gnupg/S.log’).

watchgnupg understands these options:

--force Delete an already existing socket file. This option is implicitly used if no socket
name has been given on the command line.

--homedir DIR

If no socket name is given on the command line, pass DIR to gpgconf so that
the socket for a GnuPG running with DIR has its home directory is used. Note
that the environment variable GNUPGHOME is ignored by watchgnupg.

--tcp n Instead of reading from a local socket, listen for connects on TCP port n. A
Unix domain socket can optionally also be given as a second source. This option
does not use a default socket name.

--time-only

Do not print the date part of the timestamp.

--verbose

Enable extra informational output.

--version

Print version of the program and exit.

--help Display a brief help page and exit.

160 Using the GNU Privacy Guard

Examples

$ watchgnupg --time-only

This waits for connections on the local socket (e.g. ‘/var/run/user/1234/gnupg/S.log’)
and shows all log entries. To make this work the option ‘log-file’ needs to be used with
all modules which logs are to be shown. The suggested entry for the configuration files is:

log-file socket://

If the default socket as given above and returned by "echo $(gpgconf –list-dirs
socketdir)/S.log" is not desired an arbitrary socket name can be specified, for example
‘socket:///home/foo/bar/mysocket’. For debugging purposes it is also possible to do
remote logging. Take care if you use this feature because the information is send in the
clear over the network. Use this syntax in the conf files:

log-file tcp://192.168.1.1:4711

You may use any port and not just 4711 as shown above; only IP addresses are supported
(v4 and v6) and no host names. You need to start watchgnupg with the ‘tcp’ option. Note
that under Windows the registry entry HKCU\Software\GNU\GnuPG:DefaultLogFile can
be used to change the default log output from stderr to whatever is given by that entry.
However the only useful entry is a TCP name for remote debugging.

10.2 Verify OpenPGP signatures

gpgv is an OpenPGP signature verification tool.

This program is actually a stripped-down version of gpg which is only able to check
signatures. It is somewhat smaller than the fully-blown gpg and uses a different (and
simpler) way to check that the public keys used to make the signature are valid. There are
no configuration files and only a few options are implemented.

gpgv assumes that all keys in the keyring are trustworthy. That does also mean that it
does not check for expired or revoked keys.

If no --keyring option is given, gpgv looks for a “default” keyring named
‘trustedkeys.kbx’ (preferred) or ‘trustedkeys.gpg’ in the home directory of GnuPG,
either the default home directory or the one set by the --homedir option or the GNUPGHOME
environment variable. If any --keyring option is used, gpgv will not look for the default
keyring. The --keyring option may be used multiple times and all specified keyrings will
be used together.

gpgv recognizes these options:

--verbose

-v Gives more information during processing. If used twice, the input data is listed
in detail.

--quiet

-q Try to be as quiet as possible.

--keyring file

Add file to the list of keyrings. If file begins with a tilde and a slash, these are
replaced by the HOME directory. If the filename does not contain a slash, it is
assumed to be in the home-directory ("~/.gnupg" if –homedir is not used).

Chapter 10: Helper Tools 161

--output file

-o file Write output to file; to write to stdout use -. This option can be used to get
the signed text from a cleartext or binary signature; it also works for detached
signatures, but in that case this option is in general not useful. Note that an
existing file will be overwritten.

--status-fd n

Write special status strings to the file descriptor n. See the file DETAILS in
the documentation for a listing of them.

--logger-fd n

Write log output to file descriptor n and not to stderr.

--log-file file

Same as ‘--logger-fd’, except the logger data is written to file file. Use
‘socket://’ to log to socket.

--ignore-time-conflict

GnuPG normally checks that the timestamps associated with keys and signa-
tures have plausible values. However, sometimes a signature seems to be older
than the key due to clock problems. This option turns these checks into warn-
ings.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

--weak-digest name

Treat the specified digest algorithm as weak. Signatures made over weak digests
algorithms are normally rejected. This option can be supplied multiple times
if multiple algorithms should be considered weak. MD5 is always considered
weak, and does not need to be listed explicitly.

--enable-special-filenames

This option enables a mode in which filenames of the form ‘-&n’, where n is
a non-negative decimal number, refer to the file descriptor n and not to a file
with that name.

--assert-pubkey-algo algolist

This option works in the same way as described for gpg.

The program returns 0 if everything is fine, 1 if at least one signature was bad, and other
error codes for fatal errors.

162 Using the GNU Privacy Guard

10.2.1 Examples

gpgvpgpfile
gpgvsigfile [datafile]

Verify the signature of the file. The second form is used for detached signatures,
where sigfile is the detached signature (either ASCII-armored or binary)
and datafile contains the signed data; if datafile is "-" the signed data is
expected on stdin; if datafile is not given the name of the file holding the
signed data is constructed by cutting off the extension (".asc", ".sig" or ".sign")
from sigfile.

10.2.2 Environment

HOME Used to locate the default home directory.

GNUPGHOME
If set directory used instead of "~/.gnupg".

10.2.3 FILES

~/.gnupg/trustedkeys.gpg
The default keyring with the allowed keys.

gpg(1)

10.3 Create .gnupg home directories

If GnuPG is installed on a system with existing user accounts, it is sometimes required to
populate the GnuPG home directory with existing files. Especially a ‘trustlist.txt’ and
a keybox with some initial certificates are often desired. This script helps to do this by
copying all files from ‘/etc/skel/.gnupg’ to the home directories of the accounts given on
the command line. It takes care not to overwrite existing GnuPG home directories.

addgnupghome is invoked by root as:

addgnupghome account1 account2 ... accountn

10.4 Modify .gnupg home directories

The gpgconf is a utility to automatically and reasonable safely query and modify config-
uration files in the ‘.gnupg’ home directory. It is designed not to be invoked manually by
the user, but automatically by graphical user interfaces (GUI).1

gpgconf provides access to the configuration of one or more components of the GnuPG
system. These components correspond more or less to the programs that exist in the
GnuPG framework, like GPG, GPGSM, DirMngr, etc. But this is not a strict one-to-one
relationship. Not all configuration options are available through gpgconf. gpgconf provides
a generic and abstract method to access the most important configuration options that can
feasibly be controlled via such a mechanism.

1 Please note that currently no locking is done, so concurrent access should be avoided. There are some
precautions to avoid corruption with concurrent usage, but results may be inconsistent and some changes
may get lost. The stateless design makes it difficult to provide more guarantees.

Chapter 10: Helper Tools 163

gpgconf can be used to gather and change the options available in each component, and
can also provide their default values. gpgconf will give detailed type information that can
be used to restrict the user’s input without making an attempt to commit the changes.

gpgconf provides the backend of a configuration editor. The configuration editor would
usually be a graphical user interface program that displays the current options, their default
values, and allows the user to make changes to the options. These changes can then be made
active with gpgconf again. Such a program that uses gpgconf in this way will be called
GUI throughout this section.

10.4.1 Invoking gpgconf

One of the following commands must be given:

--list-components

List all components. This is the default command used if none is specified.

--check-programs

List all available backend programs and test whether they are runnable.

--list-options component

List all options of the component component.

--change-options component

Change the options of the component component.

--check-options component

Check the options for the component component.

--apply-profile file

Apply the configuration settings listed in file to the configuration files. If file
has no suffix and no slashes the command first tries to read a file with the
suffix .prf from the data directory (gpgconf --list-dirs datadir) before it
reads the file verbatim. A profile is divided into sections using the bracketed
component name. Each section then lists the option which shall go into the
respective configuration file.

--apply-defaults

Update all configuration files with values taken from the global configuration
file (usually ‘/etc/gnupg/gpgconf.conf’). Note: This is a legacy mechanism.
Please use global configuration files instead.

--list-dirs [names]

-L Lists the directories used by gpgconf. One directory is listed per line, and
each line consists of a colon-separated list where the first field names the direc-
tory type (for example sysconfdir) and the second field contains the percent-
escaped directory. Although they are not directories, the socket file names used
by gpg-agent and dirmngr are printed as well. Note that the socket file names
and the homedir lines are the default names and they may be overridden by
command line switches. If names are given only the directories or file names
specified by the list names are printed without any escaping.

--list-config [filename]

List the global configuration file in a colon separated format. If filename is
given, check that file instead.

164 Using the GNU Privacy Guard

--check-config [filename]

Run a syntax check on the global configuration file. If filename is given, check
that file instead.

--query-swdb package_name [version_string]

Returns the current version for package name and if version string is given also
an indicator on whether an update is available. The actual file with the software
version is automatically downloaded and checked by dirmngr. dirmngr uses a
thresholds to avoid download the file too often and it does this by default only
if it can be done via Tor. To force an update of that file this command can be
used:

gpg-connect-agent --dirmngr ’loadswdb --force’ /bye

--reload [component]

-R Reload all or the given component. This is basically the same as sending a
SIGHUP to the component. Components which don’t support reloading are
ignored. Without component or by using "all" for component all components
which are daemons are reloaded.

--launch [component]

If the component is not already running, start it. component must be a dae-
mon. This is in general not required because the system starts these daemons as
needed. However, external software making direct use of gpg-agent or dirmngr
may use this command to ensure that they are started. Using "all" for compo-
nent launches all components which are daemons.

--kill [component]

-K Kill the given component that runs as a daemon, including gpg-agent, dirmngr,
and scdaemon. A component which does not run as a daemon will be ignored.
Using "all" for component kills all components running as daemons. Note that
as of now reload and kill have the same effect for scdaemon.

--create-socketdir

Create a directory for sockets below /run/user or /var/run/user. This is com-
mand is only required if a non default home directory is used and the /run
based sockets shall be used. For the default home directory GnuPG creates a
directory on the fly.

--remove-socketdir

Remove a directory created with command ‘--create-socketdir’.

--unlock name

--lock name

Remove a stale lock file hold for ‘file’. The file is expected in the current
GnuPG home directory. This command is usually not required because GnuPG
is able to detect and remove stale lock files. Before using the command make
sure that the file protected by the lock file is actually not in use. The lock
command may be used to lock an accidentally removed lock file. Note that the
commands have no effect on Windows because the mere existence of a lock file
does not mean that the lock is active.

Chapter 10: Helper Tools 165

The following options may be used:

-o file

--output file

Write output to file. Default is to write to stdout.

-v

--verbose

Outputs additional information while running. Specifically, this extends nu-
merical field values by human-readable descriptions.

-q

--quiet Try to be as quiet as possible.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

--chuid uid

Change the current user to uid which may either be a number or a name.
This can be used from the root account to get information on the GnuPG
environment of the specified user or to start or kill daemons. If uid is not the
current UID a standard PATH is set and the envvar GNUPGHOME is unset.
To override the latter the option ‘--homedir’ can be used. This option has
currently no effect on Windows.

-n

--dry-run

Do not actually change anything. This is currently only implemented for --

change-options and can be used for testing purposes.

-r

--runtime

Only used together with --change-options. If one of the modified options can
be changed in a running daemon process, signal the running daemon to ask it
to reparse its configuration file after changing.

This means that the changes will take effect at run-time, as far as this is possible.
Otherwise, they will take effect at the next start of the respective backend
programs.

--status-fd n

Write special status strings to the file descriptor n. This program returns the
status messages SUCCESS or FAILURE which are helpful when the caller uses
a double fork approach and can’t easily get the return code of the process.

166 Using the GNU Privacy Guard

10.4.2 Format conventions

Some lines in the output of gpgconf contain a list of colon-separated fields. The following
conventions apply:

• The GUI program is required to strip off trailing newline and/or carriage return char-
acters from the output.

• gpgconf will never leave out fields. If a certain version provides a certain field, this
field will always be present in all gpgconf versions from that time on.

• Future versions of gpgconf might append fields to the list. New fields will always
be separated from the previously last field by a colon separator. The GUI should be
prepared to parse the last field it knows about up until a colon or end of line.

• Not all fields are defined under all conditions. You are required to ignore the content
of undefined fields.

There are several standard types for the content of a field:

verbatim Some fields contain strings that are not escaped in any way. Such fields are
described to be used verbatim. These fields will never contain a colon character
(for obvious reasons). No de-escaping or other formatting is required to use the
field content. This is for easy parsing of the output, when it is known that the
content can never contain any special characters.

percent-escaped
Some fields contain strings that are described to be percent-escaped. Such strings
need to be de-escaped before their content can be presented to the user. A
percent-escaped string is de-escaped by replacing all occurrences of %XY by the
byte that has the hexadecimal value XY. X and Y are from the set 0-9a-f.

localized Some fields contain strings that are described to be localized. Such strings are
translated to the active language and formatted in the active character set.

unsigned number
Some fields contain an unsigned number. This number will always fit into a 32-
bit unsigned integer variable. The number may be followed by a space, followed
by a human readable description of that value (if the verbose option is used).
You should ignore everything in the field that follows the number.

signed number
Some fields contain a signed number. This number will always fit into a 32-bit
signed integer variable. The number may be followed by a space, followed by a
human readable description of that value (if the verbose option is used). You
should ignore everything in the field that follows the number.

boolean value
Some fields contain a boolean value. This is a number with either the value 0
or 1. The number may be followed by a space, followed by a human readable
description of that value (if the verbose option is used). You should ignore
everything in the field that follows the number; checking just the first character
is sufficient in this case.

option Some fields contain an option argument. The format of an option argument
depends on the type of the option and on some flags:

Chapter 10: Helper Tools 167

no argument
The simplest case is that the option does not take an argument
at all (type 0). Then the option argument is an unsigned number
that specifies how often the option occurs. If the list flag is not
set, then the only valid number is 1. Options that do not take an
argument never have the default or optional arg flag set.

number If the option takes a number argument (alt-type is 2 or 3), and it
can only occur once (list flag is not set), then the option argument
is either empty (only allowed if the argument is optional), or it is a
number. A number is a string that begins with an optional minus
character, followed by one or more digits. The number must fit into
an integer variable (unsigned or signed, depending on alt-type).

number list
If the option takes a number argument and it can occur more than
once, then the option argument is either empty, or it is a comma-
separated list of numbers as described above.

string If the option takes a string argument (alt-type is 1), and it can only
occur once (list flag is not set) then the option argument is either
empty (only allowed if the argument is optional), or it starts with
a double quote character (") followed by a percent-escaped string
that is the argument value. Note that there is only a leading double
quote character, no trailing one. The double quote character is only
needed to be able to differentiate between no value and the empty
string as value.

string list If the option takes a string argument and it can occur more than
once, then the option argument is either empty, or it is a comma-
separated list of string arguments as described above.

The active language and character set are currently determined from the locale environ-
ment of the gpgconf program.

10.4.3 Listing components

The command --list-components will list all components that can be configured with
gpgconf. Usually, one component will correspond to one GnuPG-related program and
contain the options of that program’s configuration file that can be modified using gpgconf.
However, this is not necessarily the case. A component might also be a group of selected
options from several programs, or contain entirely virtual options that have a special effect
rather than changing exactly one option in one configuration file.

A component is a set of configuration options that semantically belong together. Fur-
thermore, several changes to a component can be made in an atomic way with a single
operation. The GUI could for example provide a menu with one entry for each component,
or a window with one tabulator sheet per component.

The command --list-components lists all available components, one per line. The
format of each line is:

name:description:pgmname:

168 Using the GNU Privacy Guard

name This field contains a name tag of the component. The name tag is used to
specify the component in all communication with gpgconf. The name tag is to
be used verbatim. It is thus not in any escaped format.

description
The string in this field contains a human-readable description of the component.
It can be displayed to the user of the GUI for informational purposes. It is
percent-escaped and localized.

pgmname The string in this field contains the absolute name of the program’s file. It can
be used to unambiguously invoke that program. It is percent-escaped.

Example:

$ gpgconf --list-components

gpg:GPG for OpenPGP:/usr/local/bin/gpg2:

gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:

scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:

gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:

dirmngr:Directory Manager:/usr/local/bin/dirmngr:

10.4.4 Checking programs

The command --check-programs is similar to --list-components but works on backend
programs and not on components. It runs each program to test whether it is installed and
runnable. This also includes a syntax check of all config file options of the program.

The command --check-programs lists all available programs, one per line. The format
of each line is:

name:description:pgmname:avail:okay:cfgfile:line:error:

name This field contains a name tag of the program which is identical to the name
of the component. The name tag is to be used verbatim. It is thus not in any
escaped format. This field may be empty to indicate a continuation of error
descriptions for the last name. The description and pgmname fields are then
also empty.

description
The string in this field contains a human-readable description of the component.
It can be displayed to the user of the GUI for informational purposes. It is
percent-escaped and localized.

pgmname The string in this field contains the absolute name of the program’s file. It can
be used to unambiguously invoke that program. It is percent-escaped.

avail The boolean value in this field indicates whether the program is installed and
runnable.

okay The boolean value in this field indicates whether the program’s config file is
syntactically okay.

cfgfile If an error occurred in the configuration file (as indicated by a false value in
the field okay), this field has the name of the failing configuration file. It is
percent-escaped.

Chapter 10: Helper Tools 169

line If an error occurred in the configuration file, this field has the line number of
the failing statement in the configuration file. It is an unsigned number.

error If an error occurred in the configuration file, this field has the error text of the
failing statement in the configuration file. It is percent-escaped and localized.

In the following example the dirmngr is not runnable and the configuration file of scdaemon
is not okay.

$ gpgconf --check-programs

gpg:GPG for OpenPGP:/usr/local/bin/gpg2:1:1:

gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:1:1:

scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:1:0:

gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:1:1:

dirmngr:Directory Manager:/usr/local/bin/dirmngr:0:0:

The command --check-options component will verify the configuration file in the same
manner as --check-programs, but only for the component component.

10.4.5 Listing options

Every component contains one or more options. Options may be gathered into option
groups to allow the GUI to give visual hints to the user about which options are related.

The command --list-options component lists all options (and the groups they belong
to) in the component component, one per line. component must be the string in the field
name in the output of the --list-components command.

There is one line for each option and each group. First come all options that are not in
any group. Then comes a line describing a group. Then come all options that belong into
each group. Then comes the next group and so on. There does not need to be any group
(and in this case the output will stop after the last non-grouped option).

The format of each line is:

name:flags:level:description:type:alt-type:argname:default:argdef:value

name This field contains a name tag for the group or option. The name tag is used
to specify the group or option in all communication with gpgconf. The name
tag is to be used verbatim. It is thus not in any escaped format.

flags The flags field contains an unsigned number. Its value is the OR-wise combina-
tion of the following flag values:

group (1) If this flag is set, this is a line describing a group and not an option.

The following flag values are only defined for options (that is, if the group flag
is not used).

optional arg (2)

If this flag is set, the argument is optional. This is never set for
type 0 (none) options.

list (4) If this flag is set, the option can be given multiple times.

runtime (8)

If this flag is set, the option can be changed at runtime.

170 Using the GNU Privacy Guard

default (16)

If this flag is set, a default value is available.

default desc (32)

If this flag is set, a (runtime) default is available. This and the
default flag are mutually exclusive.

no arg desc (64)

If this flag is set, and the optional arg flag is set, then the option
has a special meaning if no argument is given.

no change (128)

If this flag is set, gpgconf ignores requests to change the value. GUI
frontends should grey out this option. Note, that manual changes
of the configuration files are still possible.

level This field is defined for options and for groups. It contains an unsigned number
that specifies the expert level under which this group or option should be dis-
played. The following expert levels are defined for options (they have analogous
meaning for groups):

basic (0) This option should always be offered to the user.

advanced (1)

This option may be offered to advanced users.

expert (2)

This option should only be offered to expert users.

invisible (3)

This option should normally never be displayed, not even to expert
users.

internal (4)

This option is for internal use only. Ignore it.

The level of a group will always be the lowest level of all options it contains.

description
This field is defined for options and groups. The string in this field contains a
human-readable description of the option or group. It can be displayed to the
user of the GUI for informational purposes. It is percent-escaped and localized.

type This field is only defined for options. It contains an unsigned number that
specifies the type of the option’s argument, if any. The following types are
defined:

Basic types:

none (0) No argument allowed.

string (1)

An unformatted string.

int32 (2) A signed number.

Chapter 10: Helper Tools 171

uint32 (3)

An unsigned number.

Complex types:

pathname (32)

A string that describes the pathname of a file. The file does not
necessarily need to exist.

ldap server (33)

A string that describes an LDAP server in the format:

hostname:port:username:password:base_dn

key fingerprint (34)

A string with a 40 digit fingerprint specifying a certificate.

pub key (35)

A string that describes a certificate by user ID, key ID or finger-
print.

sec key (36)

A string that describes a certificate with a key by user ID, key ID
or fingerprint.

alias list (37)

A string that describes an alias list, like the one used with gpg’s
group option. The list consists of a key, an equal sign and space
separated values.

More types will be added in the future. Please see the alt-type field for infor-
mation on how to cope with unknown types.

alt-type This field is identical to type, except that only the types 0 to 31 are allowed.
The GUI is expected to present the user the option in the format specified
by type. But if the argument type type is not supported by the GUI, it can
still display the option in the more generic basic type alt-type. The GUI must
support all the defined basic types to be able to display all options. More basic
types may be added in future versions. If the GUI encounters a basic type it
doesn’t support, it should report an error and abort the operation.

argname This field is only defined for options with an argument type type that is not 0.
In this case it may contain a percent-escaped and localized string that gives a
short name for the argument. The field may also be empty, though, in which
case a short name is not known.

default This field is defined only for options for which the default or default desc

flag is set. If the default flag is set, its format is that of an option argument
(see Section 10.4.2 [Format conventions], page 166, for details). If the default
value is empty, then no default is known. Otherwise, the value specifies the
default value for this option. If the default desc flag is set, the field is either
empty or contains a description of the effect if the option is not given.

argdef This field is defined only for options for which the optional arg flag is set. If
the no arg desc flag is not set, its format is that of an option argument (see

172 Using the GNU Privacy Guard

Section 10.4.2 [Format conventions], page 166, for details). If the default value
is empty, then no default is known. Otherwise, the value specifies the default
argument for this option. If the no arg desc flag is set, the field is either empty
or contains a description of the effect of this option if no argument is given.

value This field is defined only for options. Its format is that of an option argument.
If it is empty, then the option is not explicitly set in the current configuration,
and the default applies (if any). Otherwise, it contains the current value of
the option. Note that this field is also meaningful if the option itself does not
take a real argument (in this case, it contains the number of times the option
appears).

10.4.6 Changing options

The command --change-options component will attempt to change the options of the
component component to the specified values. component must be the string in the field
name in the output of the --list-components command. You have to provide the options
that shall be changed in the following format on standard input:

name:flags:new-value

name This is the name of the option to change. name must be the string in the field
name in the output of the --list-options command.

flags The flags field contains an unsigned number. Its value is the OR-wise combina-
tion of the following flag values:

default (16)

If this flag is set, the option is deleted and the default value is used
instead (if applicable).

new-value The new value for the option. This field is only defined if the default flag is
not set. The format is that of an option argument. If it is empty (or the field is
omitted), the default argument is used (only allowed if the argument is optional
for this option). Otherwise, the option will be set to the specified value.

The output of the command is the same as that of --check-options for the modified
configuration file.

Examples:

To set the force option, which is of basic type none (0):

$ echo ’force:0:1’ | gpgconf --change-options dirmngr

To delete the force option:

$ echo ’force:16:’ | gpgconf --change-options dirmngr

The --runtime option can influence when the changes take effect.

10.4.7 Listing global options

Some legacy applications look at the global configuration file for the gpgconf tool itself; this
is the file ‘gpgconf.conf’. Modern applications should not use it but use per component
global configuration files which are more flexible than the ‘gpgconf.conf’. Using both files
is not suggested.

Chapter 10: Helper Tools 173

The colon separated listing format is record oriented and uses the first field to identify
the record type:

k This describes a key record to start the definition of a new ruleset for a
user/group. The format of a key record is:

k:user:group:

user This is the user field of the key. It is percent escaped. See the
definition of the gpgconf.conf format for details.

group This is the group field of the key. It is percent escaped.

r This describes a rule record. All rule records up to the next key record make
up a rule set for that key. The format of a rule record is:

r:::component:option:flag:value:

component
This is the component part of a rule. It is a plain string.

option This is the option part of a rule. It is a plain string.

flag This is the flags part of a rule. There may be only one flag per rule
but by using the same component and option, several flags may be
assigned to an option. It is a plain string.

value This is the optional value for the option. It is a percent escaped
string with a single quotation mark to indicate a string. The quota-
tion mark is only required to distinguish between no value specified
and an empty string.

Unknown record types should be ignored. Note that there is intentionally no feature to
change the global option file through gpgconf.

10.4.8 Get and compare software versions.

The GnuPG Project operates a server to query the current versions of software pack-
ages related to GnuPG. gpgconf can be used to access this online database. To al-
low for offline operations, this feature works by having dirmngr download a file from
https://versions.gnupg.org, checking the signature of that file and storing the file in
the GnuPG home directory. If gpgconf is used and dirmngr is running, it may ask dirmngr

to refresh that file before itself uses the file.

The command ‘--query-swdb’ returns information for the given package in a colon
delimited format:

name This is the name of the package as requested. Note that "gnupg" is a special
name which is replaced by the actual package implementing this version of
GnuPG. For this name it is also not required to specify a version because
gpgconf takes its own version in this case.

iversion The currently installed version or an empty string. The value is taken from the
command line argument but may be provided by gpg if not given.

status The status of the software package according to this table:

174 Using the GNU Privacy Guard

- No information available. This is either because no current version
has been specified or due to an error.

? The given name is not known in the online database.

u An update of the software is available.

c The installed version of the software is current.

n The installed version is already newer than the released version.

urgency If the value (the empty string should be considered as zero) is greater than zero
an important update is available.

error This returns an gpg-error error code to distinguish between various failure
modes.

filedate This gives the date of the file with the version numbers in standard ISO for-
mat (yyyymmddThhmmss). The date has been extracted by dirmngr from the
signature of the file.

verified This gives the date in ISO format the file was downloaded. This value can be
used to evaluate the freshness of the information.

version This returns the version string for the requested software from the file.

reldate This returns the release date in ISO format.

size This returns the size of the package as decimal number of bytes.

hash This returns a hexified SHA-2 hash of the package.

More fields may be added in future to the output.

10.4.9 Files used by gpgconf

‘gpgconf.ctl’
Under Unix ‘gpgconf.ctl’ may be used to change some of the compiled in
directories where the GnuPG components are expected. This file is expected
in the same directory as ‘gpgconf’. The physical installation directories are
evaluated and no symlinks. Blank lines and lines starting with pound sign are
ignored in the file. The keywords must be followed by optional white space,
an equal sign, optional white space, and the value. Environment variables
are substituted in standard shell manner, the final value must start with a
slash, trailing slashes are stripped. Valid keywords are rootdir, sysconfdir,
socketdir, and .enable. No errors are printed for unknown keywords. The
.enable keyword is special: if the keyword is used and its value evaluates to
true the entire file is ignored.

Under Windows this file is used to install GnuPG as a portable application.
An empty file named ‘gpgconf.ctl’ is expected in the same directory as
the tool ‘gpgconf.exe’. The root of the installation is then that directory;
or, if ‘gpgconf.exe’ has been installed directly below a directory named
‘bin’, its parent directory. You also need to make sure that the following
directories exist and are writable: ‘ROOT/home’ for the GnuPG home and
‘ROOT/usr/local/var/cache/gnupg’ for internal cache files.

Chapter 10: Helper Tools 175

‘/etc/gnupg/gpgconf.conf’
If this file exists, it is processed as a global configuration file. This is a legacy
mechanism which should not be used together with the modern global per
component configuration files. A commented example can be found in the
‘examples’ directory of the distribution.

‘GNUPGHOME/swdb.lst’
A file with current software versions. dirmngr creates this file on demand from
an online resource.

10.5 Run gpgconf for all users

This is a legacy script. Modern application should use the per component global configu-
ration files under ‘/etc/gnupg/’.

This script is a wrapper around gpgconf to run it with the command --apply-

defaults for all real users with an existing GnuPG home directory. Admins might
want to use this script to update he GnuPG configuration files for all users after
‘/etc/gnupg/gpgconf.conf’ has been changed. This allows enforcing certain policies for
all users. Note, that this is not a bulletproof way to force a user to use certain options. A
user may always directly edit the configuration files and bypass gpgconf.

applygnupgdefaults is invoked by root as:

applygnupgdefaults

10.6 Put a passphrase into the cache

The gpg-preset-passphrase is a utility to seed the internal cache of a running gpg-agent

with passphrases. It is mainly useful for unattended machines, where the usual pinentry
tool may not be used and the passphrases for the to be used keys are given at machine
startup.

This program works with GnuPG 2 and later. GnuPG 1.x is not supported.

Passphrases set with this utility don’t expire unless the ‘--forget’ option is used to ex-
plicitly clear them from the cache — or gpg-agent is either restarted or reloaded (by sending
a SIGHUP to it). Note that the maximum cache time as set with ‘--max-cache-ttl’ is
still honored. It is necessary to allow this passphrase presetting by starting gpg-agent with
the ‘--allow-preset-passphrase’.

10.6.1 List of all commands and options

gpg-preset-passphrase is invoked this way:

gpg-preset-passphrase [options] [command] cacheid

cacheid is either a 40 character keygrip of hexadecimal characters identifying the key
for which the passphrase should be set or cleared. The keygrip is listed along with the key
when running the command: gpgsm --with-keygrip --list-secret-keys. Alternatively
an arbitrary string may be used to identify a passphrase; it is suggested that such a string
is prefixed with the name of the application (e.g foo:12346). Scripts should always use the
option ‘--with-colons’, which provides the keygrip in a "grp" line (cf. ‘doc/DETAILS’)/

One of the following command options must be given:

176 Using the GNU Privacy Guard

--preset Preset a passphrase. This is what you usually will use. gpg-preset-

passphrase will then read the passphrase from stdin.

--forget Flush the passphrase for the given cache ID from the cache.

The following additional options may be used:

-v

--verbose

Output additional information while running.

-P string

--passphrase string

Instead of reading the passphrase from stdin, use the supplied string as
passphrase. Note that this makes the passphrase visible for other users.

10.7 Communicate with a running agent

The gpg-connect-agent is a utility to communicate with a running gpg-agent. It is useful
to check out the commands gpg-agent provides using the Assuan interface. It might also be
useful for scripting simple applications. Input is expected at stdin and output gets printed
to stdout.

It is very similar to running gpg-agent in server mode; but here we connect to a running
instance.

10.7.1 List of all options

gpg-connect-agent is invoked this way:

gpg-connect-agent [options] [commands]

The following options may be used:

--dirmngr

Connect to a running directory manager (keyserver client) instead of to the
gpg-agent. If a dirmngr is not running, start it.

--keyboxd

Connect to a running keybox daemon instead of to the gpg-agent. If a keyboxd
is not running, start it.

-S

--raw-socket name

Connect to socket name assuming this is an Assuan style server. Do not run
any special initializations or environment checks. This may be used to directly
connect to any Assuan style socket server.

-E

--exec Take the rest of the command line as a program and it’s arguments and execute
it as an Assuan server. Here is how you would run gpgsm:

gpg-connect-agent --exec gpgsm --server

Note that you may not use options on the command line in this case.

Chapter 10: Helper Tools 177

-v

--verbose

Output additional information while running.

-q

--quiet Try to be as quiet as possible.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

--chuid uid

Change the current user to uid which may either be a number or a name.
This can be used from the root account to run gpg-connect-agent for another
user. If uid is not the current UID a standard PATH is set and the envvar
GNUPGHOME is unset. To override the latter the option ‘--homedir’ can be
used. This option has only an effect when used on the command line. This
option has currently no effect at all on Windows.

--no-ext-connect

When using ‘-S’ or ‘--exec’, gpg-connect-agent connects to the Assuan server
in extended mode to allow descriptor passing. This option makes it use the old
mode.

--no-autostart

Do not start the gpg-agent or the dirmngr if it has not yet been started.

--no-history

In interactive mode the command line history is usually saved and restored to
and from a file below the GnuPG home directory. This option inhibits the use
of that file.

--agent-program file

Specify the agent program to be started if none is running. The default value
is determined by running gpgconf with the option ‘--list-dirs’. Note that
the pipe symbol (|) is used for a regression test suite hack and may thus not
be used in the file name.

--dirmngr-program file

Specify the directory manager (keyserver client) program to be started if none
is running. This has only an effect if used together with the option ‘--dirmngr’.

--keyboxd-program file

Specify the keybox daemon program to be started if none is running. This has
only an effect if used together with the option ‘--keyboxd’.

178 Using the GNU Privacy Guard

-r file

--run file

Run the commands from file at startup and then continue with the regular
input method. Note, that commands given on the command line are executed
after this file.

-s

--subst Run the command /subst at startup.

--hex Print data lines in a hex format and the ASCII representation of non-control
characters.

--decode Decode data lines. That is to remove percent escapes but make sure that a new
line always starts with a D and a space.

-u

--unbuffered

Set stdin and stdout into unbuffered I/O mode. This this sometimes useful for
scripting.

10.7.2 Control commands

While reading Assuan commands, gpg-agent also allows a few special commands to control
its operation. These control commands all start with a slash (/).

/echo args

Just print args.

/let name value

Set the variable name to value. Variables are only substituted on the input if
the /subst has been used. Variables are referenced by prefixing the name with
a dollar sign and optionally include the name in curly braces. The rules for a
valid name are identically to those of the standard bourne shell. This is not yet
enforced but may be in the future. When used with curly braces no leading or
trailing white space is allowed.

If a variable is not found, it is searched in the environment and if found copied
to the table of variables.

Variable functions are available: The name of the function must be followed by
at least one space and the at least one argument. The following functions are
available:

get Return a value described by the argument. Available arguments
are:

cwd The current working directory.

homedir The gnupg homedir.

sysconfdir

GnuPG’s system configuration directory.

bindir GnuPG’s binary directory.

libdir GnuPG’s library directory.

Chapter 10: Helper Tools 179

libexecdir

GnuPG’s library directory for executable files.

datadir GnuPG’s data directory.

serverpid

The PID of the current server. Command /serverpid

must have been given to return a useful value.

unescape args

Remove C-style escapes from args. Note that \0 and \x00 ter-
minate the returned string implicitly. The string to be converted
are the entire arguments right behind the delimiting space of the
function name.

unpercent args

unpercent+ args

Remove percent style escaping from args. Note that %00 terminates
the string implicitly. The string to be converted are the entire
arguments right behind the delimiting space of the function name.
unpercent+ also maps plus signs to a spaces.

percent args

percent+ args

Escape the args using percent style escaping. Tabs, formfeeds, line-
feeds, carriage returns and colons are escaped. percent+ also maps
spaces to plus signs.

errcode arg

errsource arg

errstring arg

Assume arg is an integer and evaluate it using strtol. Return the
gpg-error error code, error source or a formatted string with the
error code and error source.

+

-

*

/

% Evaluate all arguments as long integers using strtol and apply
this operator. A division by zero yields an empty string.

!

|

& Evaluate all arguments as long integers using strtol and apply the
logical operators NOT, OR or AND. The NOT operator works on
the last argument only.

/definq name var

Use content of the variable var for inquiries with name. name may be an
asterisk (*) to match any inquiry.

180 Using the GNU Privacy Guard

/definqfile name file

Use content of file for inquiries with name. name may be an asterisk (*) to
match any inquiry.

/definqprog name prog

Run prog for inquiries matching name and pass the entire line to it as command
line arguments.

/datafile name

Write all data lines from the server to the file name. The file is opened for
writing and created if it does not exists. An existing file is first truncated to 0.
The data written to the file fully decoded. Using a single dash for name writes
to stdout. The file is kept open until a new file is set using this command or
this command is used without an argument.

/showdef Print all definitions

/cleardef

Delete all definitions

/sendfd file mode

Open file in mode (which needs to be a valid fopen mode string) and send the
file descriptor to the server. This is usually followed by a command like INPUT
FD to set the input source for other commands.

/recvfd Not yet implemented.

/open var file [mode]

Open file and assign the file descriptor to var. Warning: This command is
experimental and might change in future versions.

/close fd

Close the file descriptor fd. Warning: This command is experimental and might
change in future versions.

/showopen

Show a list of open files.

/serverpid

Send the Assuan command GETINFO pid to the server and store the returned
PID for internal purposes.

/sleep Sleep for a second.

/hex

/nohex Same as the command line option ‘--hex’.

/decode

/nodecode

Same as the command line option ‘--decode’.

/subst

/nosubst Enable and disable variable substitution. It defaults to disabled unless the
command line option ‘--subst’ has been used. If /subst as been enabled once,
leading whitespace is removed from input lines which makes scripts easier to
read.

Chapter 10: Helper Tools 181

/while condition

/end These commands provide a way for executing loops. All lines between the while
and the corresponding end are executed as long as the evaluation of condition
yields a non-zero value or is the string true or yes. The evaluation is done by
passing condition to the strtol function. Example:

/subst

/let i 3

/while $i

/echo loop counter is $i

/let i ${- $i 1}

/end

/if condition

/end These commands provide a way for conditional execution. All lines between the
if and the corresponding end are executed only if the evaluation of condition
yields a non-zero value or is the string true or yes. The evaluation is done by
passing condition to the strtol function.

/run file

Run commands from file.

/history --clear

Clear the command history.

/bye Terminate the connection and the program.

/help Print a list of available control commands.

10.8 The Dirmngr Client Tool

The dirmngr-client is a simple tool to contact a running dirmngr and test whether a
certificate has been revoked — either by being listed in the corresponding CRL or by
running the OCSP protocol. If no dirmngr is running, a new instances will be started but
this is in general not a good idea due to the huge performance overhead.

The usual way to run this tool is either:

dirmngr-client acert

or

dirmngr-client <acert

Where acert is one DER encoded (binary) X.509 certificates to be tested. The return
value of this command is

0 The certificate under question is valid; i.e. there is a valid CRL available and it
is not listed there or the OCSP request returned that that certificate is valid.

1 The certificate has been revoked

2 (and other values)

There was a problem checking the revocation state of the certificate. A message
to stderr has given more detailed information. Most likely this is due to a
missing or expired CRL or due to a network problem.

dirmngr-client may be called with the following options:

182 Using the GNU Privacy Guard

--version

Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help, -h

Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.

--quiet, -q

Make the output extra brief by suppressing any informational messages.

-v

--verbose

Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to dirmngr, such as ‘-vv’.

--pem Assume that the given certificate is in PEM (armored) format.

--ocsp Do the check using the OCSP protocol and ignore any CRLs.

--force-default-responder

When checking using the OCSP protocol, force the use of the default OCSP
responder. That is not to use the Reponder as given by the certificate.

--ping Check whether the dirmngr daemon is up and running.

--cache-cert

Put the given certificate into the cache of a running dirmngr. This is mainly
useful for debugging.

--validate

Validate the given certificate using dirmngr’s internal validation code. This is
mainly useful for debugging.

--load-crl

This command expects a list of filenames with DER encoded CRL files. With
the option ‘--url’ URLs are expected in place of filenames and they are loaded
directly from the given location. All CRLs will be validated and then loaded
into dirmngr’s cache.

--lookup Take the remaining arguments and run a lookup command on each of them.
The results are Base-64 encoded outputs (without header lines). This may be
used to retrieve certificates from a server. However the output format is not
very well suited if more than one certificate is returned.

--url

-u Modify the lookup and load-crl commands to take an URL.

--local

-l Let the lookup command only search the local cache.

--squid-mode

Run dirmngr-client in a mode suitable as a helper program for Squid’s
‘external_acl_type’ option.

Chapter 10: Helper Tools 183

10.9 Parse a mail message into an annotated format

The gpgparsemail is a utility currently only useful for debugging. Run it with --help for
usage information.

10.10 Encrypt or sign files into an archive

gpgtar encrypts or signs files into an archive. It is an gpg-ized tar using the same format
as used by PGP’s PGP Zip.

gpgtar is invoked this way:

gpgtar [options] filename1 [filename2, ...] directory [directory2, ...]

gpgtar understands these options:

--create Put given files and directories into a vanilla “ustar” archive.

--extract

Extract all files from a vanilla “ustar” archive. If no file name is given (or it is
"-") the archive is taken from stdin.

--encrypt

-e Encrypt given files and directories into an archive. This option may be combined
with option ‘--symmetric’ for an archive that may be decrypted via a secret
key or a passphrase.

--decrypt

-d Extract all files from an encrypted archive. If no file name is given (or it is "-")
the archive is taken from stdin.

--sign

-s Make a signed archive from the given files and directories. This can be combined
with option ‘--encrypt’ to create a signed and then encrypted archive.

--list-archive

-t List the contents of the specified archive. If no file name is given (or it is "-")
the archive is taken from stdin.

--symmetric

-c Encrypt with a symmetric cipher using a passphrase. The default symmetric
cipher used is AES-128, but may be chosen with the ‘--cipher-algo’ option
to gpg.

--recipient user

-r user Encrypt for user id user. For details see gpg.

--local-user user

-u user Use user as the key to sign with. For details see gpg.

--output file

-o file Write the archive to the specified file file.

--verbose

-v Enable extra informational output.

--quiet

-q Try to be as quiet as possible.

184 Using the GNU Privacy Guard

--skip-crypto

Skip all crypto operations and create or extract vanilla “ustar” archives.

--dry-run

Do not actually output the extracted files.

--directory dir

-C dir Extract the files into the directory dir. The default is to take the directory
name from the input filename. If no input filename is known a directory named
‘GPGARCH’ is used. For tarball creation, switch to directory dir before performing
any operations.

--files-from file

-T file Take the file names to work from the file file; one file per line.

--null Modify option ‘--files-from’ to use a binary nul instead of a linefeed to
separate file names.

--utf8-strings

Assume that the file names read by ‘--files-from’ are UTF-8 encoded. This
option has an effect only on Windows where the active code page is otherwise
assumed.

--openpgp

This option has no effect because OpenPGP encryption and signing is the de-
fault.

--cms This option is reserved and shall not be used. It will eventually be used to
encrypt or sign using the CMS protocol; but that is not yet implemented.

--batch Use batch mode. Never ask but use the default action. This option is passed
directly to gpg.

--yes Assume "yes" on most questions. Often used together with ‘--batch’ to over-
write existing files. This option is passed directly to gpg.

--no Assume "no" on most questions. This option is passed directly to gpg.

--require-compliance

This option is passed directly to gpg.

--status-fd n

Write special status strings to the file descriptor n. See the file DETAILS in
the documentation for a listing of them.

--with-log

When extracting an encrypted tarball also write a log file with the gpg output
to a file named after the extraction directory with the suffix ".log".

--set-filename file

Use the last component of file as the output directory. The default is to take
the directory name from the input filename. If no input filename is known a
directory named ‘GPGARCH’ is used. This option is deprecated in favor of option
‘--directory’.

Chapter 10: Helper Tools 185

--no-compress

This option tells gpg to disable compression (i.e. using option -z0). It is useful
for archiving only large files which are already compressed (e.g. a set of videos).

--gpg gpgcmd

Use the specified command gpgcmd instead of gpg.

--gpg-args args

Pass the specified extra options to gpg.

--tar-args args

Assume args are standard options of the command tar and parse them. The
only supported tar options are "–directory", "–files-from", and "–null" This
is an obsolete options because those supported tar options can also be given
directly.

--tar command

This is a dummy option for backward compatibility.

--version

Print version of the program and exit.

--help Display a brief help page and exit.

The program returns 0 if everything was fine, 1 otherwise.

Some examples:

Encrypt the contents of directory ‘mydocs’ for user Bob to file ‘test1’:

gpgtar --encrypt --output test1 -r Bob mydocs

List the contents of archive ‘test1’:

gpgtar --list-archive test1

10.11 Encrypt rfc822 formated mail in a pipeline

gpg-mail-tube takes RFC-822 formatted mail on stdin and turns it into a PGP/MIME
encrypted mail which is then written to stdout.

The recipients must be plain mail addresses (e.g. foo@example.org) and should in
general list the To and Cc addresses contained in the mail.

gpg-mail-tube understands these options:

--verbose

-v Enable extra informational output.

--quiet

-q Try to be as quiet as possible.

--log-file file

Write log output to file. Use ‘socket://’ to log to a socket.

--no-stderr

Suppresses all output to stderr. This is useful for callers which don’t distinguish
stdout and stderr. To get diagnostics the option ‘--log-file’ can be used.

186 Using the GNU Privacy Guard

--header name=value

Add the mail header "name: value" to the output.

--setenv name=value

Put the given environment string into the environment of this process and of
the called gpg. This option is required if there is no other way to set the
environemt.

--gpg gpgcmd

Use the specified command gpgcmd instead of gpg.

--vsd Use the gpg from a GnuPG VS-Desktop AppImage. The Ap-
pImage is started if it is not running. A symlink named
‘~/.gnupg-vsd/gnupg-vs-desktop.AppImage’ needs to link to the
actually to be used AppImage.

--version

Print version of the program and exit.

--help Display a brief help page and exit.

The program returns 0 on a successful encryption or a non-zero value on error. Note that
on error some output might have already been written to stdout.

The following options can be used in a local transport rule of the Exim MTA which assumes
that that ‘check_local_user’ has been used in the router.

transport_filter = /usr/local/bin/gpg-mail-tube --setenv HOME=${home} \

--no-stderr -- $pipe_addresses

For a remote transport the use of ‘size_addition’ and an explicit setting of the user and
its home directory might be required.

10.12 Check a passphrase on stdin against the patternfile

gpg-check-pattern checks a passphrase given on stdin against a specified pattern file.

The pattern file is line based with comment lines beginning on the first position with a
#. Empty lines and lines with only white spaces are ignored. The actual pattern lines may
either be verbatim string pattern and match as they are (trailing spaces are ignored) or
extended regular expressions indicated by a / or !/ in the first column and terminated by
another / or end of line. If a regular expression starts with !/ the match result is reversed.
By default all comparisons are case insensitive.

Tag lines may be used to further control the operation of this tool. The currently defined
tags are:

[icase] Switch to case insensitive comparison for all further patterns. This is the de-
fault.

[case] Switch to case sensitive comparison for all further patterns.

[reject] Switch to reject mode. This is the default mode.

[accept] Switch to accept mode.

Chapter 10: Helper Tools 187

In the future more tags may be introduced and thus it is advisable not to start a plain
pattern string with an open bracket. The tags must be given verbatim on the line with no
spaces to the left or any non white space characters to the right.

In reject mode the program exits on the first match with an exit code of 1 (failure). If
at the end of the pattern list the reject mode is still active the program exits with code 0
(success).

In accept mode blocks of patterns are used. A block starts at the next pattern after
an "accept" tag and ends with the last pattern before the next "accept" or "reject" tag or
at the end of the pattern list. If all patterns in a block match the program exits with an
exit code of 0 (success). If any pattern in a block do not match the next pattern block is
evaluated. If at the end of the pattern list the accept mode is still active the program exits
with code 1 (failure).

--verbose

Enable extra informational output.

--check Run only a syntax check on the patternfile.

--null Input is expected to be null delimited.

188 Using the GNU Privacy Guard

Chapter 11: Web Key Service 189

11 Web Key Service

GnuPG comes with tools used to maintain and access a Web Key Directory.

11.1 Send requests via WKS

The gpg-wks-client is used to send requests to a Web Key Service provider. This is
usually done to upload a key into a Web Key Directory.

With the ‘--supported’ command the caller can test whether a site supports the Web
Key Service. The argument is an arbitrary address in the to be tested domain. For example
‘foo@example.net’. The command returns success if the Web Key Service is supported.
The operation is silent; to get diagnostic output use the option ‘--verbose’. See option
‘--with-colons’ for a variant of this command.

With the ‘--check’ command the caller can test whether a key exists for a supplied mail
address. The command returns success if a key is available.

The ‘--create’ command is used to send a request for publication in the Web Key
Directory. The arguments are the fingerprint of the key and the user id to publish. The
output from the command is a properly formatted mail with all standard headers. This mail
can be fed to sendmail(8) or any other tool to actually send that mail. If sendmail(8)
is installed the option ‘--send’ can be used to directly send the created request. If the
provider request a ’mailbox-only’ user id and no such user id is found, gpg-wks-client will
try an additional user id.

The ‘--receive’ and ‘--read’ commands are used to process confirmation mails as send
from the service provider. The former expects an encrypted MIME messages, the latter an
already decrypted MIME message. The result of these commands are another mail which
can be send in the same way as the mail created with ‘--create’.

The command ‘--install-key’ manually installs a key into a local directory (see option
‘-C’) reflecting the structure of a WKD. The arguments are a file with the keyblock and
the user-id to install. If the first argument resembles a fingerprint the key is taken from
the current keyring; to force the use of a file, prefix the first argument with "./". If no
arguments are given the parameters are read from stdin; the expected format are lines
with the fingerprint and the mailbox separated by a space. The command ‘--remove-key’
removes a key from that directory, its only argument is a user-id.

The command ‘--mirror’ is similar to ‘--install-key’ but takes the keys from the the
LDAP server configured for Dirmngr. If no arguments are given all keys and user ids are
installed. If arguments are given they are taken as domain names to limit the to be installed
keys. The option ‘--blacklist’ may be used to further limit the to be installed keys.

The command ‘--print-wkd-hash’ prints the WKD user-id identifiers and the corre-
sponding mailboxes from the user-ids given on the command line or via stdin (one user-id
per line).

The command ‘--print-wkd-url’ prints the URLs used to fetch the key for the given
user-ids from WKD. The meanwhile preferred format with sub-domains is used here.

All commands may also be given without the two leading dashes.

gpg-wks-client understands these options:

190 Using the GNU Privacy Guard

--send Directly send created mails using the sendmail command. Requires installation
of that command.

--with-colons

This option has currently only an effect on the ‘--supported’ command. If
it is used all arguments on the command line are taken as domain names and
tested for WKD support. The output format is one line per domain with colon
delimited fields. The currently specified fields are (future versions may specify
additional fields):

1 - domain
This is the domain name. Although quoting is not required for
valid domain names this field is specified to be quoted in standard
C manner.

2 - WKD If the value is true the domain supports the Web Key Directory.

3 - WKS If the value is true the domain supports the Web Key Service
protocol to upload keys to the directory.

4 - error-code
This may contain an gpg-error code to describe certain failures.
Use ‘gpg-error CODE’ to explain the code.

5 - protocol-version
The minimum protocol version supported by the server.

6 - auth-submit
The auth-submit flag from the policy file of the server.

7 - mailbox-only
The mailbox-only flag from the policy file of the server.

--output file

-o Write the created mail to file instead of stdout. Note that the value - for file
is the same as writing to stdout. If this option is used with the ‘--check’
command and a key was found it is written to the given file.

--status-fd n

Write special status strings to the file descriptor n. This program returns only
the status messages SUCCESS or FAILURE which are helpful when the caller
uses a double fork approach and can’t easily get the return code of the process.

-C dir

--directory dir

Use dir as top level directory for the commands ‘--mirror’, ‘--install-key’
and ‘--remove-key’. The default is ‘openpgpkey’.

--blacklist file

This option is used to exclude certain mail addresses from a mirror operation.
The format of file is one mail address (just the addrspec, e.g. "postel@isi.edu")
per line. Empty lines and lines starting with a ’#’ are ignored.

Chapter 11: Web Key Service 191

--add-revocs

--no-add-revocs

If enabled append revocation certificates for the same addrspec as used in the
WKD to the key. Modern gpg version are able to import and apply them
for existing keys. Note that when used with the ‘--mirror’ command the
revocation are searched in the local keyring and not in an LDAP directory.
The default is ‘--add-revocs’.

--verbose

Enable extra informational output.

--quiet Disable almost all informational output.

--version

Print version of the program and exit.

--help Display a brief help page and exit.

Examples

To use the services with clients lacking integrated support, the mailcap mechanism can be
used. Simply put:

application/vnd.gnupg.wks; \

/usr/local/bin/gpg-wks-client -v --read --send; \

needsterminal; \

description=WKS message

into the ‘/etc/mailcap’. This assumes that a /usr/lib/sendmail is installed. With this
configuration any real mail programs will run gpg-wks-client for messages received from a
Web Key Service.

11.2 Provide the Web Key Service

The gpg-wks-server is a server side implementation of the Web Key Service. It receives
requests for publication, sends confirmation requests, receives confirmations, and published
the key. It also has features to ease the setup and maintenance of a Web Key Directory.

When used with the command ‘--receive’ a single Web Key Service mail is processed.
Commonly this command is used with the option ‘--send’ to directly send the created mails
back. See below for an installation example.

The command ‘--cron’ is used for regular cleanup tasks. For example non-confirmed
requested should be removed after their expire time. It is best to run this command once
a day from a cronjob.

The command ‘--list-domains’ prints all configured domains. Further it creates miss-
ing directories for the configuration and prints warnings pertaining to problems in the
configuration.

The command ‘--check-key’ (or just ‘--check’) checks whether a key with the given
user-id is installed. The process returns success in this case; to also print a diagnostic use
the option ‘-v’. If the key is not installed a diagnostic is printed and the process returns

192 Using the GNU Privacy Guard

failure; to suppress the diagnostic, use option ‘-q’. More than one user-id can be given; see
also option ‘with-file’.

The command ‘--install-key’ manually installs a key into the WKD. The arguments
are a file with the keyblock and the user-id to install. If the first argument resembles a
fingerprint the key is taken from the current keyring; to force the use of a file, prefix the
first argument with "./". If no arguments are given the parameters are read from stdin; the
expected format are lines with the fingerprint and the mailbox separated by a space.

The command ‘--remove-key’ uninstalls a key from the WKD. The process returns
success in this case; to also print a diagnostic, use option ‘-v’. If the key is not installed a
diagnostic is printed and the process returns failure; to suppress the diagnostic, use option
‘-q’.

The command ‘--revoke-key’ is not yet functional.

gpg-wks-server understands these options:

-C dir

--directory dir

Use dir as top level directory for domains. The default is
‘/var/lib/gnupg/wks’.

--from mailaddr

Use mailaddr as the default sender address.

--header name=value

Add the mail header "name: value" to all outgoing mails.

--send Directly send created mails using the sendmail command. Requires installation
of that command.

-o file

--output file

Write the created mail also to file. Note that the value - for file would write it
to stdout.

--with-dir

When used with the command ‘--list-domains’ print for each installed do-
main the domain name and its directory name.

--with-file

When used with the command ‘--check-key’ print for each user-id, the address,
’i’ for installed key or ’n’ for not installed key, and the filename.

--verbose

Enable extra informational output.

--quiet Disable almost all informational output.

--version

Print version of the program and exit.

--help Display a brief help page and exit.

Chapter 11: Web Key Service 193

Examples

The Web Key Service requires a working directory to store keys pending for publication.
As root create a working directory:

mkdir /var/lib/gnupg/wks

chown webkey:webkey /var/lib/gnupg/wks

chmod 2750 /var/lib/gnupg/wks

Then under your webkey account create directories for all your domains. Here we do it
for "example.net":

$ mkdir /var/lib/gnupg/wks/example.net

Finally run

$ gpg-wks-server --list-domains

to create the required sub-directories with the permissions set correctly. For each domain
a submission address needs to be configured. All service mails are directed to that address.
It can be the same address for all configured domains, for example:

$ cd /var/lib/gnupg/wks/example.net

$ echo key-submission@example.net >submission-address

The protocol requires that the key to be published is sent with an encrypted mail to the
service. Thus you need to create a key for the submission address:

$ gpg --batch --passphrase ’’ --quick-gen-key key-submission@example.net

$ gpg -K key-submission@example.net

The output of the last command looks similar to this:

sec rsa3072 2016-08-30 [SC]

C0FCF8642D830C53246211400346653590B3795B

uid [ultimate] key-submission@example.net

bxzcxpxk8h87z1k7bzk86xn5aj47intu@example.net

ssb rsa3072 2016-08-30 [E]

Take the fingerprint from that output and manually publish the key:

$ gpg-wks-server --install-key C0FCF8642D830C53246211400346653590B3795B \

> key-submission@example.net

Finally that submission address needs to be redirected to a script running gpg-wks-

server. The procmail command can be used for this: Redirect the submission address to
the user "webkey" and put this into webkey’s ‘.procmailrc’:

:0

* !^From: webkey@example.net

* !^X-WKS-Loop: webkey.example.net

|gpg-wks-server -v --receive \

--header X-WKS-Loop=webkey.example.net \

--from webkey@example.net --send

194 Using the GNU Privacy Guard

Chapter 12: How to do certain things 195

12 How to do certain things

This is a collection of small howto documents.

12.1 Creating a TLS server certificate

Here is a brief run up on how to create a server certificate. It has actually been done this
way to get a certificate from CAcert to be used on a real server. It has only been tested
with this CA, but there shouldn’t be any problem to run this against any other CA.

We start by generating an X.509 certificate signing request. As there is no need for a
configuration file, you may simply enter:� �

$ gpgsm --generate-key >example.com.cert-req.pem

Please select what kind of key you want:

(1) RSA

(2) Existing key

(3) Existing key from card

Your selection? 1
 	
I opted for creating a new RSA key. The other option is to use an already exist-

ing key, by selecting 2 and entering the so-called keygrip. Running the command ‘gpgsm
--dump-secret-key USERID’ shows you this keygrip. Using 3 offers another menu to create
a certificate directly from a smart card based key.

Let’s continue:� �
What keysize do you want? (3072)

Requested keysize is 3072 bits
 	
Hitting enter chooses the default RSA key size of 3072 bits. Keys smaller than 2048 bits

are too weak on the modern Internet. If you choose a larger (stronger) key, your server will
need to do more work.� �

Possible actions for a RSA key:

(1) sign, encrypt

(2) sign

(3) encrypt

Your selection? 1
 	
Selecting “sign” enables use of the key for Diffie-Hellman key exchange mechanisms (DHE

and ECDHE) in TLS, which are preferred because they offer forward secrecy. Selecting
“encrypt” enables RSA key exchange mechanisms, which are still common in some places.
Selecting both enables both key exchange mechanisms.

Now for some real data:� �
Enter the X.509 subject name: CN=example.com
 	

196 Using the GNU Privacy Guard

This is the most important value for a server certificate. Enter here the canonical name
of your server machine. You may add other virtual server names later.� �

E-Mail addresses (end with an empty line):

>
 	
We don’t need email addresses in a TLS server certificate and CAcert would anyway

ignore such a request. Thus just hit enter.

If you want to create a client certificate for email encryption, this would be the place to
enter your mail address (e.g. joe@example.org). You may enter as many addresses as you
like, however the CA may not accept them all or reject the entire request.� �

Enter DNS names (optional; end with an empty line):

> example.com

> www.example.com

>
 	
Here I entered the names of the services which the machine actually provides. You

almost always want to include the canonical name here too. The browser will accept a
certificate for any of these names. As usual the CA must approve all of these names.� �

URIs (optional; end with an empty line):

>
 	
It is possible to insert arbitrary URIs into a certificate; for a server certificate this does

not make sense.� �
Create self-signed certificate? (y/N)
 	
Since we are creating a certificate signing request, and not a full certificate, we answer

no here, or just hit enter for the default.

We have now entered all required information and gpgsm will display what it has gathered
and ask whether to create the certificate request:� �

These parameters are used:

Key-Type: RSA

Key-Length: 3072

Key-Usage: sign, encrypt

Name-DN: CN=example.com

Name-DNS: example.com

Name-DNS: www.example.com

Proceed with creation? (y/N) y
 	

mailto:joe@example.org

Chapter 12: How to do certain things 197

gpgsm will now start working on creating the request. As this includes the creation of an
RSA key it may take a while. During this time you will be asked 3 times for a passphrase
to protect the created private key on your system. A pop up window will appear to ask for
it. The first two prompts are for the new passphrase and for re-entering it; the third one is
required to actually create the certificate signing request.

When it is ready, you should see the final notice:� �
Ready. You should now send this request to your CA.
 	
Now, you may look at the created request:� �
$ cat example.com.cert-req.pem

-----BEGIN CERTIFICATE REQUEST-----

MIIClTCCAX0CAQAwFjEUMBIGA1UEAxMLZXhhbXBsZS5jb20wggEiMA0GCSqGSIb3

DQEBAQUAA4IBDwAwggEKAoIBAQDP1QEcbTvOLLCX4gAoOzH9AW7jNOMj7OSOL0uW

h2bCdkK5YVpnX212Z6COTC3ZG0pJiCeGt1TbbDJUlTa4syQ6JXavjK66N8ASZsyC

Rwcl0m6hbXp541t1dbgt2VgeGk25okWw3j+brw6zxLD2TnthJxOatID0lDIG47HW

GqzZmA6WHbIBIONmGnReIHTpPAPCDm92vUkpKG1xLPszuRmsQbwEl870W/FHrsvm

DPvVUUSdIvTV9NuRt7/WY6G4nPp9QlIuTf1ESPzIuIE91gKPdrRCAx0yuT708S1n

xCv3ETQ/bKPoAQ67eE3mPBqkcVwv9SE/2/36Lz06kAizRgs5AgMBAAGgOjA4Bgkq

hkiG9w0BCQ4xKzApMCcGA1UdEQQgMB6CC2V4YW1wbGUuY29tgg93d3cuZXhhbXBs

ZS5jb20wDQYJKoZIhvcNAQELBQADggEBAEWD0Qqz4OENLYp6yyO/KqF0ig9FDsLN

b5/R+qhms5qlhdB5+Dh+j693Sj0UgbcNKc6JT86IuBqEBZmRCJuXRoKoo5aMS1cJ

hXga7N9IA3qb4VBUzBWvlL92U2Iptr/cEbikFlYZF2Zv3PBv8RfopVlI3OLbKV9D

bJJTt/6kuoydXKo/Vx4G0DFzIKNdFdJk86o/Ziz8NOs9JjZxw9H9VY5sHKFM5LKk

VcLwnnLRlNjBGB+9VK/Tze575eG0cJomTp7UGIB+1xzIQVAhUZOizRDv9tHDeaK3

k+tUhV0kuJcYHucpJycDSrP/uAY5zuVJ0rs2QSjdnav62YrRgEsxJrU=

-----END CERTIFICATE REQUEST-----

$
 	
You may now proceed by logging into your account at the CAcert website, choose Server

Certificates - New, check sign by class 3 root certificate, paste the above request
block into the text field and click on Submit.

If everything works out fine, a certificate will be shown. Now run� �
$ gpgsm --import
 	

and paste the certificate from the CAcert page into your terminal followed by a Ctrl-D

198 Using the GNU Privacy Guard

� �
-----BEGIN CERTIFICATE-----

MIIEIjCCAgqgAwIBAgIBTDANBgkqhkiG9w0BAQQFADBUMRQwEgYDVQQKEwtDQWNl

[...]

rUTFlNElRXCwIl0YcJkIaYYqWf7+A/aqYJCi8+51usZwMy3Jsq3hJ6MA3h1BgwZs

Rtct3tIX

-----END CERTIFICATE-----

gpgsm: issuer certificate (#/CN=CAcert Class 3 Ro[...]) not found

gpgsm: certificate imported

gpgsm: total number processed: 1

gpgsm: imported: 1
 	
gpgsm tells you that it has imported the certificate. It is now associated with the key

you used when creating the request. The root certificate has not been found, so you may
want to import it from the CACert website.

To see the content of your certificate, you may now enter:� �
$ gpgsm -K example.com

/home/foo/.gnupg/pubring.kbx

Serial number: 4C

Issuer: /CN=CAcert Class 3 Root/OU=http:\x2f\x2fwww.[...]

Subject: /CN=example.com

aka: (dns-name example.com)

aka: (dns-name www.example.com)

validity: 2015-07-01 16:20:51 through 2016-07-01 16:20:51

key type: 3072 bit RSA

key usage: digitalSignature keyEncipherment

ext key usage: clientAuth (suggested), serverAuth (suggested), [...]

fingerprint: 0F:9C:27:B2:DA:05:5F:CB:33:D8:19:E9:65:B9:4F:BD:B1:98:CC:57
 	
I used ‘-K’ above because this will only list certificates for which a private key is available.

To see more details, you may use ‘--dump-secret-keys’ instead of ‘-K’.

To make actual use of the certificate you need to install it on your server. Server software
usually expects a PKCS\#12 file with key and certificate. To create such a file, run:� �

$ gpgsm --export-secret-key-p12 -a >example.com-cert.pem
 	
You will be asked for the passphrase as well as for a new passphrase to be used to protect

the PKCS\#12 file. The file now contains the certificate as well as the private key:

Chapter 12: How to do certain things 199

� �
$ cat example-cert.pem

Issuer ...: /CN=CAcert Class 3 Root/OU=http:\x2f\x2fwww.CA[...]

Serial ...: 4C

Subject ..: /CN=example.com

aka ..: (dns-name example.com)

aka ..: (dns-name www.example.com)

-----BEGIN PKCS12-----

MIIHlwIBAzCCB5AGCSqGSIb37QdHAaCCB4EEggd9MIIHeTk1BJ8GCSqGSIb3DQEu

[...many more lines...]

-----END PKCS12-----

$
 	
Copy this file in a secure way to the server, install it there and delete the file then. You

may export the file again at any time as long as it is available in GnuPG’s private key
database.

200 Using the GNU Privacy Guard

Chapter 13: Notes pertaining to certain OSes 201

13 Notes pertaining to certain OSes

GnuPG has been developed on GNU/Linux systems and is know to work on almost all
Free OSes. All modern POSIX systems should be supported right now, however there are
probably a lot of smaller glitches we need to fix first. The major problem areas are:

• We are planning to use file descriptor passing for interprocess communication. This
will allow us save a lot of resources and improve performance of certain operations a
lot. Systems not supporting this won’t gain these benefits but we try to keep them
working the standard way as it is done today.

• We require more or less full POSIX compatibility. This has been around for 15 years
now and thus we don’t believe it makes sense to support non POSIX systems anymore.
Well, we of course the usual workarounds for near POSIX systems well be applied.

There is one exception of this rule: Systems based the Microsoft Windows API (called
here W32) will be supported to some extend.

13.1 Microsoft Windows Notes

Current limitations are:

• gpgconf does not create backup files, so in case of trouble your configuration file might
get lost.

• watchgnupg is not available. Logging to sockets is not possible.

• The periodical smartcard status checking done by scdaemon is not yet supported.

202 Using the GNU Privacy Guard

Chapter 14: How to solve problems 203

14 How to solve problems

Everyone knows that software often does not do what it should do and thus there is a need
to track down problems. We call this debugging in a reminiscent to the moth jamming a
relay in a Mark II box back in 1947.

Most of the problems a merely configuration and user problems but nevertheless they are
the most annoying ones and responsible for many gray hairs. We try to give some guidelines
here on how to identify and solve the problem at hand.

14.1 Debugging Tools

The GnuPG distribution comes with a couple of tools, useful to help find and solving
problems.

14.1.1 Scrutinizing a keybox file

A keybox is a file format used to store public keys along with meta information and indices.
The commonly used one is the file ‘pubring.kbx’ in the ‘.gnupg’ directory. It contains all
X.509 certificates as well as OpenPGP keys.

When called the standard way, e.g.:

‘kbxutil ~/.gnupg/pubring.kbx’

it lists all records (called blobs) with there meta-information in a human readable format.

To see statistics on the keybox in question, run it using

‘kbxutil --stats ~/.gnupg/pubring.kbx’

and you get an output like:

Total number of blobs: 99

header: 1

empty: 0

openpgp: 0

x509: 98

non flagged: 81

secret flagged: 0

ephemeral flagged: 17

In this example you see that the keybox does not have any OpenPGP keys but contains
98 X.509 certificates and a total of 17 keys or certificates are flagged as ephemeral, meaning
that they are only temporary stored (cached) in the keybox and won’t get listed using the
usual commands provided by gpgsm or gpg. 81 certificates are stored in a standard way
and directly available from gpgsm.

To find duplicated certificates and keyblocks in a keybox file (this should not occur but
sometimes things go wrong), run it using

‘kbxutil --find-dups ~/.gnupg/pubring.kbx’

204 Using the GNU Privacy Guard

14.2 Various hints on debugging

• How to find the IP address of a keyserver

If a round robin URL of is used for a keyserver (e.g. subkeys.gnupg.org); it is not easy
to see what server is actually used. Using the keyserver debug option as in

gpg --keyserver-options debug=1 -v --refresh-key 1E42B367

is thus often helpful. Note that the actual output depends on the backend and may
change from release to release.

• Logging on WindowsCE

For development, the best logging method on WindowsCE is the use of remote debug-
ging using a log file name of ‘tcp://<ip-addr>:<port>’. The command watchgnupg

may be used on the remote host to listen on the given port (see [option watchgnupg
–tcp], page 159). For in the field tests it is better to make use of the logging facility
provided by the gpgcedev driver (part of libassuan); this is enabled by using a log file
name of ‘GPG2:’ (see [option –log-file], page 6).

14.3 Commonly Seen Problems

• Error code ‘Not supported’ from Dirmngr

Most likely the option ‘enable-ocsp’ is active for gpgsm but Dirmngr’s OCSP feature
has not been enabled using ‘allow-ocsp’ in ‘dirmngr.conf’.

• The Curses based Pinentry does not work

The far most common reason for this is that the environment variable GPG_TTY has not
been set correctly. Make sure that it has been set to a real tty device and not just to
‘/dev/tty’; i.e. ‘GPG_TTY=tty’ is plainly wrong; what you want is ‘GPG_TTY=‘tty‘’ —
note the back ticks. Also make sure that this environment variable gets exported, that
is you should follow up the setting with an ‘export GPG_TTY’ (assuming a Bourne style
shell). Even for GUI based Pinentries; you should have set GPG_TTY. See the section
on installing the gpg-agent on how to do it.

• SSH hangs while a popping up pinentry was expected

SSH has no way to tell the gpg-agent what terminal or X display it is running on. So
when remotely logging into a box where a gpg-agent with SSH support is running, the
pinentry will get popped up on whatever display the gpg-agent has been started. To
solve this problem you may issue the command

echo UPDATESTARTUPTTY | gpg-connect-agent

and the next pinentry will pop up on your display or screen. However, you need to kill
the running pinentry first because only one pinentry may be running at once. If you
plan to use ssh on a new display you should issue the above command before invoking
ssh or any other service making use of ssh.

• Exporting a secret key without a certificate

It may happen that you have created a certificate request using gpgsm but not yet
received and imported the certificate from the CA. However, you want to export the
secret key to another machine right now to import the certificate over there then. You
can do this with a little trick but it requires that you know the approximate time you
created the signing request. By running the command

Chapter 14: How to solve problems 205

ls -ltr ~/.gnupg/private-keys-v1.d

you get a listing of all private keys under control of gpg-agent. Pick the key which
best matches the creation time and run the command� �

/usr/local/libexec/gpg-protect-tool --p12-export \

~/.gnupg/private-keys-v1.d/foo >foo.p12
 	
(Please adjust the path to gpg-protect-tool to the appropriate location). foo is the
name of the key file you picked (it should have the suffix ‘.key’). A Pinentry box will
pop up and ask you for the current passphrase of the key and a new passphrase to
protect it in the pkcs#12 file.

To import the created file on the machine you use this command:� �
/usr/local/libexec/gpg-protect-tool --p12-import --store foo.p12
 	

You will be asked for the pkcs#12 passphrase and a new passphrase to protect the
imported private key at its new location.

Note that there is no easy way to match existing certificates with stored private keys
because some private keys are used for Secure Shell or other purposes and don’t have
a corresponding certificate.

• A root certificate does not verify

A common problem is that the root certificate misses the required basicConstraints
attribute and thus gpgsm rejects this certificate. An error message indicating “no
value” is a sign for such a certificate. You may use the relax flag in ‘trustlist.txt’
to accept the certificate anyway. Note that the fingerprint and this flag may only be
added manually to ‘trustlist.txt’.

• Error message: “digest algorithm N has not been enabled”

The signature is broken. You may try the option ‘--extra-digest-algo SHA256’ to
workaround the problem. The number N is the internal algorithm identifier; for example
8 refers to SHA-256.

• The Windows version does not work under Wine

When running the W32 version of gpg under Wine you may get an error messages like:
gpg: fatal: WriteConsole failed: Access denied

The solution is to use the command wineconsole.

Some operations like ‘--generate-key’ really want to talk to the console directly for
increased security (for example to prevent the passphrase from appearing on the screen).
So, you should use wineconsole instead of wine, which will launch a windows console
that implements those additional features.

• Why does GPG’s –search-key list weird keys?

For performance reasons the keyservers do not check the keys the same way gpg does.
It may happen that the listing of keys available on the keyservers shows keys with
wrong user IDs or with user Ids from other keys. If you try to import this key, the
bad keys or bad user ids won’t get imported, though. This is a bit unfortunate but we
can’t do anything about it without actually downloading the keys.

206 Using the GNU Privacy Guard

14.4 How the whole thing works internally

14.4.1 How the components work together

Figure 14.1: GnuPG module overview

14.4.2 Relationship between GnuPG 1.4 and 2.x

Here is a little picture showing how the different GnuPG versions make use of a smartcard:

Chapter 14: How to solve problems 207

Figure 14.2: GnuPG card architecture

208 Using the GNU Privacy Guard

GNU General Public License 209

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/

210 Using the GNU Privacy Guard

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 211

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

212 Using the GNU Privacy Guard

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 213

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

214 Using the GNU Privacy Guard

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 215

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

216 Using the GNU Privacy Guard

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 217

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

218 Using the GNU Privacy Guard

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 219

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are

welcome to redistribute it under certain conditions;

type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read https://www.gnu.org/philosophy/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/philosophy/why-not-lgpl.html

220 Using the GNU Privacy Guard

Contributors to GnuPG 221

Contributors to GnuPG

The GnuPG project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact the maintainer if you have been left out or some of your
contributions are not listed.

David Shaw, Matthew Skala, Michael Roth, Niklas Hernaeus, Nils Ellmenreich, Rmi
Guyomarch, Stefan Bellon, Timo Schulz and Werner Koch wrote the code. Birger Langk-
jer, Daniel Resare, Dokianakis Theofanis, Edmund GRIMLEY EVANS, Gal Quri, Gre-
gory Steuck, Nagy Ferenc Lszl, Ivo Timmermans, Jacobo Tarri’o Barreiro, Janusz Alek-
sander Urbanowicz, Jedi Lin, Jouni Hiltunen, Laurentiu Buzdugan, Magda Procha’zkova’,
Michael Anckaert, Michal Majer, Marco d’Itri, Nilgun Belma Buguner, Pedro Morais, Tedi
Heriyanto, Thiago Jung Bauermann, Rafael Caetano dos Santos, Toomas Soome, Urko
Lusa, Walter Koch, Yosiaki IIDA did the official translations. Mike Ashley wrote and
maintains the GNU Privacy Handbook. David Scribner is the current FAQ editor. Lorenzo
Cappelletti maintains the web site.

The new modularized architecture of gnupg 1.9 as well as the X.509/CMS part has
been developed as part of the gypten project. Direct contributors to this project are:
Bernhard Herzog, who did extensive testing and tracked down a lot of bugs. Bernhard
Reiter, who made sure that we met the specifications and the deadlines. He did extensive
testing and came up with a lot of suggestions. Jan-Oliver Wagner made sure that we met
the specifications and the deadlines. He also did extensive testing and came up with a lot
of suggestions. Karl-Heinz Zimmer and Marc Mutz had to struggle with all the bugs and
misconceptions while working on KDE integration. Marcus Brinkman extended GPGME,
cleaned up the Assuan code and fixed bugs all over the place. Moritz Schulte took over
Libgcrypt maintenance and developed it into a stable an useful library. Steffen Hansen had
a hard time to write the dirmngr due to underspecified interfaces. Thomas Koester did
extensive testing and tracked down a lot of bugs. Werner Koch designed the system and
wrote most of the code.

The following people helped greatly by suggesting improvements, testing, fixing bugs,
providing resources and doing other important tasks: Adam Mitchell, Albert Chin, Alec
Habig, Allan Clark, Anand Kumria, Andreas Haumer, Anthony Mulcahy, Ariel T Glenn,
Bob Mathews, Bodo Moeller, Brendan O’Dea, Brenno de Winter, Brian M. Carlson, Brian
Moore, Brian Warner, Bryan Fullerton, Caskey L. Dickson, Cees van de Griend, Charles
Levert, Chip Salzenberg, Chris Adams, Christian Biere, Christian Kurz, Christian von
Roques, Christopher Oliver, Christian Recktenwald, Dan Winship, Daniel Eisenbud, Daniel
Koening, Dave Dykstra, David C Niemi, David Champion, David Ellement, David Hallinan,
David Hollenberg, David Mathog, David R. Bergstein, Detlef Lannert, Dimitri, Dirk Lat-
termann, Dirk Meyer, Disastry, Douglas Calvert, Ed Boraas, Edmund GRIMLEY EVANS,
Edwin Woudt, Enzo Michelangeli, Ernst Molitor, Fabio Coatti, Felix von Leitner, fish
stiqz, Florian Weimer, Francesco Potorti, Frank Donahoe, Frank Heckenbach, Frank Sta-
jano, Frank Tobin, Gabriel Rosenkoetter, Gal Quri, Gene Carter, Geoff Keating, Georg
Schwarz, Giampaolo Tomassoni, Gilbert Fernandes, Greg Louis, Greg Troxel, Gregory
Steuck, Gregery Barton, Harald Denker, Holger Baust, Hendrik Buschkamp, Holger Schurig,
Holger Smolinski, Holger Trapp, Hugh Daniel, Huy Le, Ian McKellar, Ivo Timmermans,
Jan Krueger, Jan Niehusmann, Janusz A. Urbanowicz, James Troup, Jean-loup Gailly, Jeff

222 Using the GNU Privacy Guard

Long, Jeffery Von Ronne, Jens Bachem, Jeroen C. van Gelderen, J Horacio MG, J. Michael
Ashley, Jim Bauer, Jim Small, Joachim Backes, Joe Rhett, John A. Martin, Johnny Teveen,
Jrg Schilling, Jos Backus, Joseph Walton, Juan F. Codagnone, Jun Kuriyama, Kahil D.
Jallad, Karl Fogel, Karsten Thygesen, Katsuhiro Kondou, Kazu Yamamoto, Keith Clay-
ton, Kevin Ryde, Klaus Singvogel, Kurt Garloff, Lars Kellogg-Stedman, L. Sassaman, M
Taylor, Marcel Waldvogel, Marco d’Itri, Marco Parrone, Marcus Brinkmann, Mark Adler,
Mark Elbrecht, Mark Pettit, Markus Friedl, Martin Kahlert, Martin Hamilton, Martin
Schulte, Matt Kraai, Matthew Skala, Matthew Wilcox, Matthias Urlichs, Max Valian-
skiy, Michael Engels, Michael Fischer v. Mollard, Michael Roth, Michael Sobolev, Michael
Tokarev, Nicolas Graner, Mike McEwan, Neal H Walfield, Nelson H. F. Beebe, NIIBE Yu-
taka, Niklas Hernaeus, Nimrod Zimerman, N J Doye, Oliver Haakert, Oskari Jskelinen,
Pascal Scheffers, Paul D. Smith, Per Cederqvist, Phil Blundell, Philippe Laliberte, Peter
Fales, Peter Gutmann, Peter Marschall, Peter Valchev, Piotr Krukowiecki, QingLong, Ralph
Gillen, Rat, Reinhard Wobst, Rmi Guyomarch, Reuben Sumner, Richard Outerbridge,
Robert Joop, Roddy Strachan, Roger Sondermann, Roland Rosenfeld, Roman Pavlik, Ross
Golder, Ryan Malayter, Sam Roberts, Sami Tolvanen, Sean MacLennan, Sebastian Klemke,
Serge Munhoven, SL Baur, Stefan Bellon, Dr.Stefan.Dalibor, Stefan Karrmann, Stefan
Keller, Steffen Ullrich, Steffen Zahn, Steven Bakker, Steven Murdoch, Susanne Schultz,
Ted Cabeen, Thiago Jung Bauermann, Thijmen Klok, Thomas Roessler, Tim Mooney,
Timo Schulz, Todd Vierling, TOGAWA Satoshi, Tom Spindler, Tom Zerucha, Tomas Fasth,
Tommi Komulainen, Thomas Klausner, Tomasz Kozlowski, Thomas Mikkelsen, Ulf Mller,
Urko Lusa, Vincent P. Broman, Volker Quetschke, W Lewis, Walter Hofmann, Walter Koch,
Wayne Chapeskie, Wim Vandeputte, Winona Brown, Yosiaki IIDA, Yoshihiro Kajiki and
Gerlinde Klaes.

This software has been made possible by the previous work of Chris Wedgwood, Jean-
loup Gailly, Jon Callas, Mark Adler, Martin Hellman, Paul Kendall, Philip R. Zimmermann,
Peter Gutmann, Philip A. Nelson, Taher Elgamal, Torbjorn Granlund, Whitfield Diffie,
some unknown NSA mathematicians and all the folks who have worked hard to create
complete and free operating systems.

And finally we’d like to thank everyone who uses these tools, submits bug reports and
generally reminds us why we’re doing this work in the first place.

Glossary 223

Glossary

‘ARL’ The Authority Revocation List is technical identical to a CRL but used for CAs
and not for end user certificates.

‘Chain model’
Verification model for X.509 which uses the creation date of a signature as
the date the validation starts and in turn checks that each certificate has been
issued within the time frame, the issuing certificate was valid. This allows
the verification of signatures after the CA’s certificate expired. The validation
test also required an online check of the certificate status. The chain model is
required by the German signature law. See also Shell model.

‘CMS’ The Cryptographic Message Standard describes a message format for encryption
and digital signing. It is closely related to the X.509 certificate format. CMS

was formerly known under the name PKCS#7 and is described by RFC3369.

‘CRL’ The Certificate Revocation List is a list containing certificates revoked by the
issuer.

‘CSR’ The Certificate Signing Request is a message send to a CA to ask them to issue
a new certificate. The data format of such a signing request is called PCKS#10.

‘OpenPGP’ A data format used to build a PKI and to exchange encrypted or signed mes-
sages. In contrast to X.509, OpenPGP also includes the message format but
does not explicitly demand a specific PKI. However any kind of PKI may be
build upon the OpenPGP protocol.

‘Keygrip’ This term is used by GnuPG to describe a 20 byte hash value used to identify
a certain key without referencing to a concrete protocol. It is used internally
to access a private key. Usually it is shown and entered as a 40 character
hexadecimal formatted string.

‘OCSP’ The Online Certificate Status Protocol is used as an alternative to a CRL. It is
described in RFC 2560.

‘PSE’ The Personal Security Environment describes a database to store private keys.
This is either a smartcard or a collection of files on a disk; the latter is often
called a Soft-PSE.

‘Shell model’
The standard model for validation of certificates under X.509. At the time of
the verification all certificates must be valid and not expired. See also Chain
model.

‘X.509’ Description of a PKI used with CMS. It is for example defined by RFC3280.

224 Using the GNU Privacy Guard

Option Index 225

Option Index

-
--no-history . 145, 177

A
add-desig-revoker . 63
add-revocs . 191
add-servers . 31
agent-program 69, 111, 146, 177
allow-admin . 132
allow-emacs-pinentry . 7
allow-freeform-uid . 90
allow-loopback-pinentry . 6
allow-non-selfsigned-uid 90
allow-ocsp . 31
allow-old-cipher-algos . 90
allow-preset-passphrase . 6
allow-secret-key-import . 93
allow-version-check . 28
allow-weak-digest-algos . 90
allow-weak-key-signatures 91
always-trust . 65, 116
application-priority . 132
armor . 73, 113
ask-cert-expire . 93
ask-cert-level . 62
ask-sig-expire . 92
assert-pubkey-algo . 65, 161
assert-signer . 65, 115
assume-armor . 113
assume-base64 . 113
assume-binary . 113
attribute-fd . 85
attribute-file . 85
authenticate . 146
auto-check-trustdb . 69
auto-expand-secmem . 11
auto-issuer-key-retrieve 112
auto-key-import . 66
auto-key-locate . 65
auto-key-retrieve . 66

B
base64 . 113
batch . 4, 56, 184
blacklist . 190
bzip2-compress-level . 61
bzip2-decompress-lowmem . 61

C
c . 27

cache-cert . 182
cafpr . 146
call-dirmngr . 107
call-protect-tool . 108
card-edit . 43
card-status . 43
card-timeout . 132
cert-digest-algo . 87
cert-notation . 85
cert-policy-url . 86
change-passphrase . 55, 110
change-pin . 43
check . 187
check-passphrase-pattern . 8
check-signatures . 42
check-sigs . 42
check-sym-passphrase-pattern 8
check-trustdb . 45
checkkeys . 148
chuid . 94, 115, 146, 165, 177
chunk-size . 74
cipher-algo . 87, 114
clear-sign . 40
clearsign . 40
cms . 184
command-fd . 89
command-file . 90
comment . 85
compatibility-flags 26, 83, 116
compliance . 82, 115
compliant-needed . 69
compress-algo . 87
compress-level . 61
connect-quick-timeout . 28
connect-timeout . 28
create . 183
create-socketdir . 164
csh . 6, 27

D
daemon . 3, 25, 129
dearmor . 46
debug . 5, 27, 84, 117, 130
debug-all . 5, 27, 84, 117, 130
debug-allow-core-dump 117, 130
debug-allow-large-chunks 84
debug-assuan-log-cats . 131
debug-disable-ticker . 130
debug-ignore-expiration 84, 117
debug-iolbf . 84
debug-level 4, 26, 83, 116, 130
debug-log-tid . 131
debug-no-chain-validation 117

226 Using the GNU Privacy Guard

debug-pinentry . 5
debug-quick-random . 5
debug-wait . 5, 27, 130
decode . 178
decrypt . 40, 107, 183
decrypt-files . 41
default-cache-ttl . 7
default-cert-expire . 93
default-cert-level . 62
default-key . 55, 113
default-keyserver-url . 94
default-new-key-adsk . 63
default-new-key-algo string 93
default-preference-list . 94
default-recipient . 56
default-recipient-self . 56
default-sig-expire . 92
delete-keys . 43, 109
delete-secret-and-public-key 44
delete-secret-keys . 43
deny-admin . 132
desig-revoke . 49
detach-sign . 40
digest-algo . 87
directory . 184, 190, 192
dirmngr . 176
dirmngr-program . 69, 111, 177
disable-application . 132
disable-ccid . 131
disable-check-own-socket 9, 27
disable-cipher-algo . 88
disable-crl-checks . 111
disable-dsa2 . 59
disable-extended-key-format 10
disable-http . 29
disable-ipv4 . 29
disable-ipv6 . 29
disable-large-rsa . 59
disable-ldap . 29
disable-mdc . 80
disable-ocsp . 112
disable-pinpad . 132
disable-policy-checks . 111
disable-pubkey-algo . 88
disable-scdaemon . 9
disable-signer-uid . 80
disable-trusted-cert-crl-check 112
display . 9
display-charset . 60
display-charset:iso-8859-1 60
display-charset:iso-8859-15 60
display-charset:iso-8859-2 60
display-charset:koi8-r . 60
display-charset:utf-8 . 60
dry-run . 83, 184
dump-cert . 108
dump-chain . 108
dump-external-keys . 109

dump-keys . 108
dump-options 3, 25, 39, 107, 129
dump-secret-keys . 108

E
edit-card . 43
edit-key . 49
emit-version . 85
enable-crl-checks . 111
enable-dsa2 . 59
enable-extended-key-format 10
enable-issuer-based-crl-check 112
enable-large-rsa . 59
enable-ocsp . 112
enable-passphrase-history 8
enable-pinpad-varlen . 132
enable-policy-checks . 111
enable-progress-filter . 84
enable-putty-support . 10
enable-special-filenames 93, 161
enable-ssh-support . 10
enable-trusted-cert-crl-check 112
enable-win32-openssh-support 10
enarmor . 46
encrypt . 40, 107, 183
encrypt-files . 41
encrypt-to . 71
enforce-passphrase-constraints 7
escape-from-lines . 88
exec . 176
exec-path . 59
exit-on-status-write-error 70
expert . 71
export . 44, 109
export-filter . 76
export-options . 78
export-ownertrust . 46
export-secret-key-p12 . 109
export-secret-key-p8 . 109
export-secret-key-raw . 109
export-secret-keys . 44
export-secret-subkeys . 44
export-ssh-key . 44
extra-digest-algo . 115
extra-socket . 10
extract . 183

F
factory-reset . 146
faked-system-time 4, 26, 84, 116
fast-list-mode . 92
fetch . 146
fetch-crl . 25
fetch-keys . 45
fingerprint . 43
fixed-list-mode . 79

Option Index 227

flush . 26
for-your-eyes-only . 86
forbid-gen-key . 93
force . 27, 159
force-aead . 80
force-crl-refresh . 112
force-default-responder 182
force-mdc . 80
force-ocb . 80
force-sign-key . 93
forcesig . 146
forget . 176
from . 192
full-gen-key . 49
full-generate-key . 49
full-timestrings . 84

G
gen-key . 49, 108
gen-prime . 46
gen-random . 46
gen-revoke . 49
generate . 146
generate-designated-revocation 49
generate-key . 49, 108
generate-revocation . 49
gnupg . 81
gpg . 185, 186
gpg-agent-info . 69
gpg-args . 185
gpg-program . 146
gpgconf-list . 94
gpgconf-test . 94
gpgsm-program . 146
grab . 6
group . 72

H
header . 186, 192
help . . 3, 25, 39, 107, 129, 145, 159, 182, 185, 186,

191, 192
hex . 178
hidden-encrypt-to . 72
hidden-recipient . 71
hidden-recipient-file . 71
homedir 4, 60, 110, 129, 161, 165, 177
honor-http-proxy . 30
http-proxy . 30

I
ignore-cache-for-signing . 7
ignore-cert . 33
ignore-cert-extension 32, 113
ignore-cert-with-oid . 116
ignore-crc-error . 90

ignore-crl-extension . 32
ignore-http-dp . 30
ignore-ldap-dp . 30
ignore-mdc-error . 90
ignore-ocsp-service-url . 30
ignore-time-conflict 90, 161
ignore-valid-from . 90
import . 45, 110
import-filter . 76
import-options . 74
import-ownertrust . 46
include-certs . 114
include-key-block . 80
input-size-hint . 74, 113
interactive . 83

K
kdf-setup . 147
keep-display . 9
keep-tty . 9
key-origin . 74
keyboxd . 176
keyboxd-program . 177
keydb-clear-some-cert-flags 109
keyedit:addadsk . 53
keyedit:addcardkey . 51
keyedit:addkey . 51
keyedit:addphoto . 50
keyedit:addrevoker . 53
keyedit:adduid . 50
keyedit:bkuptocard . 52
keyedit:change-usage . 53
keyedit:check . 50
keyedit:clean . 53
keyedit:cross-certify . 53
keyedit:delkey . 52
keyedit:delsig . 50
keyedit:deluid . 50
keyedit:disable . 53
keyedit:enable . 53
keyedit:expire . 52
keyedit:key . 49
keyedit:keyserver . 51
keyedit:keytocard . 52
keyedit:keytotpm . 52
keyedit:lsign . 50
keyedit:minimize . 53
keyedit:notation . 51
keyedit:nrsign . 50
keyedit:passwd . 53
keyedit:pref . 51
keyedit:primary . 50
keyedit:quit . 53
keyedit:revkey . 52
keyedit:revsig . 50
keyedit:revuid . 50
keyedit:save . 53

228 Using the GNU Privacy Guard

keyedit:setpref . 51
keyedit:showphoto . 50
keyedit:showpref . 51
keyedit:sign . 49
keyedit:toggle . 53
keyedit:trust . 52
keyedit:tsign . 50
keyedit:uid . 49
keyid-format . 67
keyring . 59, 160
keyserver . 28, 67, 110
keyserver-options . 67
kill . 164
known-notation . 86

L
lang . 147
launch . 164
lc-ctype . 9
lc-messages . 9
ldap-proxy . 30
ldapserver . 31
ldapserverlist-file . 30
ldaptimeout . 31
learn-card . 110
legacy-list-mode . 79
limit-card-insert-tries . 70
list . 147
list-archive . 183
list-chain . 108
list-config . 94
list-crls . 25
list-filter . 57
list-gcrypt-config . 94
list-keys . 41, 108
list-only . 83
list-options . 57
list-options:show-keyring 58
list-options:show-keyserver-urls 57
list-options:show-notations 57
list-options:show-only-fpr-mbox 58
list-options:show-ownertrust 57
list-options:show-photos 57
list-options:show-policy-urls 57
list-options:show-sig-expire 58
list-options:show-sig-subpackets 58
list-options:show-std-notations 57
list-options:show-uid-validity 57
list-options:show-unusable-sigs 57
list-options:show-unusable-subkeys 57
list-options:show-unusable-uids 57
list-options:show-usage . 57
list-options:show-user-notations 57
list-options:sort-sigs . 58
list-packets . 43
list-secret-keys . 42, 108
list-signatures . 91

list-sigs . 91
listen-backlog . 9, 28, 131
load-crl . 25, 182
local-user . 72, 113, 183
locate-external-keys . 42
locate-keys . 42
lock-multiple . 70
lock-never . 70
lock-once . 70
log-file 6, 26, 85, 111, 131, 161, 185
log-time . 85, 111
logger-fd . 84, 161
login . 147
lookup . 182
lsign-key . 54

M
mangle-dos-filenames . 62
marginals-needed . 69
max-cache-ttl . 7
max-cache-ttl-ssh . 7
max-cert-depth . 69
max-output . 73
max-passphrase-days . 8
max-replies . 32
min-cert-level . 62
min-passphrase-len . 7
min-passphrase-nonalpha . 7
min-rsa-length . 82, 115
multi-server . 129
multifile . 41

N
name . 147
nameserver . 29
no . 56, 184
no-add-revocs . 191
no-allow-external-cache . 6
no-allow-loopback-pinentry 6
no-allow-mark-trusted . 6
no-armor . 73
no-auto-key-import . 66
no-auto-key-retrieve . 66
no-auto-trust-new-key . 93
no-autostart 69, 111, 145, 177
no-batch . 56
no-common-certs-import . 118
no-compress . 61, 185
no-default-keyring . 91
no-default-recipient . 56
no-detach . 5, 131
no-encrypt-to . 72
no-expensive-trust-checks 93
no-ext-connect . 177
no-grab . 6
no-greeting . 70

Option Index 229

no-groups . 72
no-include-key-block . 80
no-keyring . 91
no-literal . 92
no-mangle-dos-filenames . 62
no-options . 61
no-pretty-dn . 114
no-random-seed-file . 70
no-secmem-warning . 70, 111
no-sig-cache . 69
no-skip-hidden-recipients 73
no-symkey-cache . 89
no-tty . 56
no-use-standard-socket . 9
no-use-tor . 27
no-user-trustlist . 6
no-verbose . 56
not-dash-escaped . 88
null . 184, 187

O
ocsp . 182
ocsp-current-period . 32
ocsp-max-clock-skew . 32
ocsp-max-period . 32
ocsp-responder . 32
ocsp-signer . 32
only-ldap-proxy . 30
openpgp . 82, 184
options . 4, 26, 61, 110, 129
output 73, 114, 161, 183, 190, 192
override-session-key . 92

P
p12-charset . 113
passphrase . 89, 176
passphrase-fd . 88, 117
passphrase-file . 89
passphrase-repeat . 88
passwd . 55, 110, 147
pcsc-driver . 131
pcsc-shared . 131
pem . 182
permission-warning . 70
personal-aead-preferences 95
personal-cipher-preferences 80
personal-compress-preferences 81
personal-digest-preferences 81
pgp6 . 82
pgp7 . 82
pgp8 . 82
photo-viewer . 59
pinentry-formatted-passphrase 8
pinentry-invisible-char . 8
pinentry-mode . 89, 117
pinentry-program . 8

pinentry-timeout . 8
pinentry-touch-file . 9
ping . 182
policy-file . 111
prefer-system-dirmngr . 111
preserve-permissions . 94
preset . 176
primary-keyring . 60
print-md . 46
privatedo . 147
proc-all-sigs . 56

Q
q . 147, 177
quick-add-adsk . 48
quick-add-key . 48
quick-add-uid . 54
quick-gen-key . 47
quick-generate-key . 47
quick-lsign-key . 54
quick-revoke-sig . 54
quick-revoke-uid . 54
quick-set-expire . 48
quick-set-ownertrust . 55
quick-set-primary-uid . 55
quick-sign-key . 54
quick-update-pref . 55
quiet 4, 56, 145, 160, 165, 177, 182, 183, 185,

191, 192
quit . 147

R
raw-socket . 176
readcert . 147
reader-port . 131
rebuild-keydb-caches . 46
receive-keys . 45
recipient . 71, 114, 183
recipient-file . 71
recursive-resolver . 28
recv-keys . 45
refresh-keys . 45
reload . 164
remove-socketdir . 164
request-origin . 89, 117
require-compliance 82, 115, 184
require-cross-certification 71
require-secmem . 71
reset . 148
resolver-timeout . 28
rfc2440 . 82
rfc4880 . 82
rfc4880bis . 82
run . 178

230 Using the GNU Privacy Guard

S
s . 27
s2k-calibration . 12
s2k-cipher-algo . 81
s2k-count . 12, 81
s2k-digest-algo . 81
s2k-mode . 81
salut . 148
salutation . 148
scdaemon-program . 9
search-keys . 45
secret-keyring . 60
send . 190, 192
send-keys . 44
sender . 72
server . 3, 25, 107, 129
set-filename . 86, 184
set-filesize . 92
set-notation . 85
set-policy-url . 86
setenv . 186
sh . 6, 27
show-certs . 109
show-keyring . 95
show-keys . 42
show-notation . 95
show-photos . 95
show-policy-url . 95
show-session-key . 92
shutdown . 26
sig-keyserver-url . 86
sig-notation . 85
sig-policy-url . 86
sign . 39, 107
sign-key . 54
skip-crypto . 184
skip-hidden-recipients . 73
skip-verify . 91
squid-mode . 182
ssh-fingerprint-digest . 11
standard-resolver . 28
status-fd 84, 145, 161, 165, 184, 190
status-file . 84
steal-socket . 5
store . 40
subst . 178
supervised . 4, 25
symmetric . 40
sys-trustlist-name . 6

T
tar . 185
tar-args . 185
textmode . 94
throw-keyids . 88
time-only . 159
tls-debug . 27

tofu-default-policy . 69
tofu-policy . 47
trust-model . 63
trust-model:always . 64
trust-model:auto . 64
trust-model:classic . 63
trust-model:direct . 64
trust-model:pgp . 63
trust-model:tofu . 63
trust-model:tofu+pgp . 64
trustdb-name . 60
trusted-key . 62
try-all-secrets . 73
try-secret-key . 73
ttyname . 9
ttytype . 9

U
uif . 148
unblock . 148
unbuffered . 178
ungroup . 72
unwrap . 46
update-trustdb . 45
url . 148, 182
use-agent . 69
use-embedded-filename . 86
use-standard-socket . 9
use-standard-socket-p . 9
use-tor . 27
utf8-strings . 61, 184

V
v . 26, 110, 130, 182
validate . 182
validation-model . 112
verbose 4, 26, 56, 110, 130, 145, 159, 160, 176,

177, 182, 183, 185, 187, 191, 192
verify . 40, 107, 148
verify-files . 41
verify-options . 58
verify-options:show-keyserver-urls 58
verify-options:show-notations 58
verify-options:show-photos 58
verify-options:show-policy-urls 58
verify-options:show-primary-uid-only 59
verify-options:show-std-notations 58
verify-options:show-uid-validity 58
verify-options:show-unusable-uids 58
verify-options:show-user-notations 58
version 3, 25, 39, 107, 129, 145, 159, 182, 185,

186, 191, 192
vsd . 186

Option Index 231

W
warranty . 39, 107
weak-digest . 91, 161
with-colons . 79, 145, 190
with-dir . 192
with-ephemeral-keys . 116
with-file . 192
with-fingerprint . 79
with-icao-spelling . 79
with-key-data . 91, 114
with-key-origin . 80
with-keygrip . 79
with-log . 184
with-secret . 80, 114
with-subkey-fingerprint . 79

with-v5-fingerprint . 79
with-validation . 114
with-wkd-hash . 80
writecert . 148
writekey . 148

X
xauthority . 9

Y
yes . 56, 184
yubikey . 149

232 Using the GNU Privacy Guard

Environment Variable and File Index 233

Environment Variable and File Index

.

.gpg-v21-migrated . 97

~
~/.gnupg . 96

A
ASSUAN_DEBUG . 131

C
COLUMNS . 97
com-certs.pem . 119
common.conf . 95, 118

D
dirmngr.conf . 33
DISPLAY . 127

G
GNUPG_BUILD_ROOT . 97
GNUPG_EXEC_DEBUG_FLAGS . 98
GNUPGHOME 4, 60, 97, 110, 129, 161, 165, 177
gpg-agent.conf . 12
gpg.conf . 95
GPG_TTY . 3, 127
gpgsm.conf . 118

H
help.txt . 119
HKCU\Software\GNU\GnuPG:DefaultLogFile 6
HKCU\Software\GNU\GnuPG:HomeDir 4, 60, 110,

129, 161, 165, 177
HOME . 97
http_proxy . 30

L
LANGUAGE . 97
LC_CTYPE . 127
LC_MESSAGES . 127
LINES . 97

O
openpgp-revocs.d . 97

P
PATH . 59
PINENTRY_USER_DATA . 97, 127
policies.txt . 118
private-keys-v1.d . 14
pubring.gpg . 96
pubring.kbx . 96, 119

Q
qualified.txt . 118

R
random_seed . 97, 119

S
S.gpg-agent . 119
secring.gpg . 96
SHELL . 6
sshcontrol . 13

T
TERM . 127
trustdb.gpg . 97
trustlist.txt . 12

X
XAUTHORITY . 127

234 Using the GNU Privacy Guard

Index 235

Index

C
command options 3, 25, 39, 107, 129
contributors . 221

D
DIRMNGR command options 25

G
GPG command options . 39
GPG-AGENT command options 3
gpgconf.conf . 175
gpgconf.ctl . 174
GPGSM command options 107

O
options, DIRMNGR command 25
options, GPG command . 39
options, GPG-AGENT command 3

options, GPGSM command 107
options, SCDAEMON command 129

R
relax . 13

S
scd-event . 134
scdaemon.conf . 133
SCDAEMON command options 129
SIGHUP . 14, 35
SIGINT . 14, 35
SIGTERM . 14, 35
SIGUSR1 . 14, 35
SIGUSR2 . 15
swdb.lst . 175

T
trust values . 143

236 Using the GNU Privacy Guard

	A short installation guide
	Invoking GPG-AGENT
	Commands
	Option Summary
	Configuration
	Use of some signals
	Examples
	Agent's Assuan Protocol
	Decrypting a session key
	Signing a Hash
	Generating a Key
	Importing a Secret Key
	Export a Secret Key
	Importing a Root Certificate
	Ask for a passphrase
	Remove a cached passphrase
	Set a passphrase for a keygrip
	Ask for confirmation
	Check whether a key is available
	Register a smartcard
	Change a Passphrase
	Change the standard display
	Get the Event Counters
	Return information about the process
	Set options for the session

	Invoking DIRMNGR
	Commands
	Option Summary
	Configuration
	Use of signals
	Examples
	Dirmngr's Assuan Protocol
	Return the certificate(s) found
	Validate a certificate using a CRL or OCSP
	Validate a certificate using a CRL
	Validate a certificate using OCSP
	Put a certificate into the internal cache
	Validate a certificate for debugging

	Invoking GPG
	Commands
	Commands not specific to the function
	Commands to select the type of operation
	How to manage your keys

	Option Summary
	How to change the configuration
	Key related options
	Input and Output
	OpenPGP protocol specific options
	Compliance options
	Doing things one usually doesn't want to do
	Deprecated options

	Configuration files
	Examples
	Unattended Usage
	Programmatic use of GnuPG
	Ephemeral home directories
	The quick key manipulation interface
	Unattended key generation

	Invoking GPGSM
	Commands
	Commands not specific to the function
	Commands to select the type of operation
	How to manage the certificates and keys

	Option Summary
	How to change the configuration
	Certificate related options
	Input and Output
	How to change how the CMS is created
	Doing things one usually do not want to do

	Configuration files
	Examples
	Unattended Usage
	Automated signature checking
	CSR and certificate creation

	The Protocol the Server Mode Uses
	Encrypting a Message
	Decrypting a message
	Signing a Message
	Verifying a Message
	Generating a Key
	List available keys
	Export certificates
	Import certificates
	Delete certificates
	Retrieve an audit log
	Return information about the process
	Session options

	Invoking the SCDAEMON
	Commands
	Option Summary
	Description of card applications
	The OpenPGP card application ``openpgp''
	The Telesec NetKey card ``nks''
	The DINSIG card application ``dinsig''
	The PKCS#15 card application ``p15''
	The Geldkarte card application ``geldkarte''
	The SmartCard-HSM card application ``sc-hsm''
	The Undefined card application ``undefined''

	Configuration files
	Examples
	Scdaemon's Assuan Protocol
	Return the serial number
	Read all useful information from the card
	Return a certificate
	Return a public key
	Signing data with a Smartcard
	Decrypting data with a Smartcard
	Read an attribute's value
	Update an attribute's value
	Write a key to a card
	Generate a new key on-card
	Return random bytes generated on-card
	Change PINs
	Perform a VERIFY operation
	Perform a RESTART operation
	Send a verbatim APDU to the card

	How to Specify a User Id
	Trust Values
	Smart Card Tool
	Administrate smart cards.

	Helper Tools
	Read logs from a socket
	Verify OpenPGP signatures
	Examples
	Environment
	FILES

	Create .gnupg home directories
	Modify .gnupg home directories
	Invoking gpgconf
	Format conventions
	Listing components
	Checking programs
	Listing options
	Changing options
	Listing global options
	Get and compare software versions.
	Files used by gpgconf

	Run gpgconf for all users
	Put a passphrase into the cache
	List of all commands and options

	Communicate with a running agent
	List of all options
	Control commands

	The Dirmngr Client Tool
	Parse a mail message into an annotated format
	Encrypt or sign files into an archive
	Encrypt rfc822 formated mail in a pipeline
	Check a passphrase on stdin against the patternfile

	Web Key Service
	Send requests via WKS
	Provide the Web Key Service

	How to do certain things
	Creating a TLS server certificate

	Notes pertaining to certain OSes
	Microsoft Windows Notes

	How to solve problems
	Debugging Tools
	Scrutinizing a keybox file

	Various hints on debugging
	Commonly Seen Problems
	How the whole thing works internally
	How the components work together
	Relationship between GnuPG 1.4 and 2.x

	GNU General Public License
	Preamble
	TERMS AND CONDITIONS
	How to Apply These Terms to Your New Programs

	Contributors to GnuPG
	Glossary
	Option Index
	Environment Variable and File Index
	Index

